Bootstrapping Monodromy Defects in the Wess-Zumino Model

Aleix Gimenez-Grau

DESY Hamburg

Based on:

- AGG, Liendo: 2108.05107.

See also:

- AGG, Liendo, van Vliet: 2012.00018 (Philine's talk).
- Barrat, AGG, Liendo: 2108.13432 (Julien's talk).

Wess-Zumino model

The Wess-Zumino model has one complex scalar and a Weyl fermion:

$$
L_{\mathrm{WZ}}=\left(\partial_{\mu} \bar{\phi}\right)\left(\partial_{\mu} \phi\right)+\psi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi+\frac{g}{2}\left(\psi \psi \phi+\psi^{\dagger} \psi^{\dagger} \bar{\phi}\right)+\frac{g^{2}}{4}(\phi \bar{\phi})^{2} .
$$

Interesting properties:

- Supersymmetric and preserves four supercharges.
- Continuum limit of a lattice model.
- A nice example of emergent supersymmetry.
- Might be realized experimentally at the boundary of a topological insulator.

Wess-Zumino model

The Wess-Zumino model has one complex scalar and a Weyl fermion:

$$
L_{\mathrm{WZ}}=\left(\partial_{\mu} \bar{\phi}\right)\left(\partial_{\mu} \phi\right)+\psi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi+\frac{g}{2}\left(\psi \psi \phi+\psi^{\dagger} \psi^{\dagger} \bar{\phi}\right)+\frac{g^{2}}{4}(\phi \bar{\phi})^{2} .
$$

Notice:

- Free in $d=4$.
- Non-trivial fixed point in $d=3$.
- Perturbation theory in $d=4-\varepsilon$.

We will not use the Lagrangian description!

Monodromy defect

Since the theory has a $U(1)$ symmetry, we can impose a monodromy: [Söderberg '17; Giombi, Helfenberger, Ji, Khanchandani '21]

$$
\phi(r, \theta+2 \pi, \vec{y})=e^{2 \pi i v} \phi(r, \theta, \vec{y}) .
$$

It breaks conformal symmetry: $S O(d+1,1) \rightarrow S O(d-1,1) \oplus S O(2)$. The monodromy defect preserves two supercharges in the WZ model.

There are two new observables that define any defect

$$
\mathcal{Q}_{\bullet}\left|=\langle\langle\mathcal{O}\rangle\rangle \propto a_{\mathcal{O}}, \quad \stackrel{\mathcal{O}}{ }\right| \widehat{\mathcal{O}}=\langle\langle\mathcal{O} \widehat{\mathcal{O}}\rangle\rangle \propto b_{\mathcal{O} \widehat{\mathcal{O}}}
$$

The defect data $\left\{a_{\mathcal{O}}, b_{\mathcal{O} \widehat{\mathcal{O}}}\right\}$ is the analog of $\left\{\lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}}\right\}$ in regular CFT.

Crossing equation

The simplest correlator not fixed by conformal symmetry is:

$$
\begin{array}{c|c}
\phi \bullet & =\left\langle\left\langle\phi\left(x_{1}\right) \bar{\phi}\left(x_{2}\right)\right\rangle\right\rangle \sim \mathcal{G}(z, \bar{z}) . \\
\bar{\phi} \bullet & .
\end{array}
$$

There are two possible OPEs

$$
\phi \times \bar{\phi} \sim \sum \lambda_{\phi \bar{\phi} \mathcal{O}} \mathcal{O}, \quad \phi \sim \sum b_{\phi \widehat{\mathcal{O}}} \widehat{\mathcal{O}} .
$$

Their equality is the crossing equation: [Billo, Goncalves, Lauria, Meineri ' 16]

$$
\mathcal{G}(z, \bar{z})=\sum_{\mathcal{O}} \lambda_{\phi \bar{\phi} \mathcal{O}} a_{\mathcal{O}} F_{\Delta, \ell}(z, \bar{z})=\sum_{\widehat{\mathcal{O}}}\left|b_{\phi \widehat{\mathcal{O}}}\right|^{2} \hat{F}_{\hat{\Delta}, s}(z, \bar{z}) .
$$

To bootstrap the correlator, information flows from bulk to defect.

Inversion formula

Thanks to the inversion formula, the discontinuity $\operatorname{Disc} \mathcal{G}(z, \bar{z})$ is sufficient to reconstruct the full correlator: [Lemos, Liendo, Meineri, Sarkar '17]

$$
\int d^{2} z I_{\widehat{\Delta}, s}(z, \bar{z}) \operatorname{Disc} \mathcal{G}(z, \bar{z})=-\sum_{\widehat{\mathcal{O}}} \frac{b_{\phi \widehat{\mathcal{O}}}^{2}}{\hat{\Delta}-\hat{\Delta}_{\widehat{\mathcal{O}}}}
$$

If the bulk OPE is $\phi \times \bar{\phi} \sim \sum_{\ell} \mathcal{O}_{\ell}$, a simple calculation shows

$$
\left.\operatorname{Disc} \mathcal{G}(z, \bar{z})\right|_{O(\varepsilon)} \sim \sum_{\ell=0}^{\infty}\left(\lambda_{\phi \bar{\phi} \mathcal{O}_{\ell}} a_{\mathcal{O}_{\ell}}\right)_{\text {free }} \gamma_{\ell} \tilde{F}_{\Delta_{\mathcal{O}_{\ell}, \ell}}(z, \bar{z}) .
$$

At this order, the discontinuity depends only on free theory coefficients and bulk anomalous dimensions (independent of the defect!).

We obtained γ_{ℓ} using standard bootstrap methods:

$$
\Delta_{\ell}=2 \Delta_{\phi}+\ell+\gamma_{\ell}=2 \Delta_{\phi}+\ell+\frac{2}{3} \frac{(-1)^{\ell}}{\ell+1} \varepsilon+O\left(\varepsilon^{2}\right) .
$$

Wess-Zumino monodromy defect

Summary:

- Extract the defect data by computing the inversion formula integral.

The leading defect family is of the form $\widehat{\mathcal{O}}_{s} \sim\left(\partial_{\perp}\right)^{s} \phi$:
$\hat{\Delta}_{s}=\frac{d-1}{3}+|s|+\varepsilon \hat{\gamma}_{s}^{(1)}+O\left(\varepsilon^{2}\right), \quad \hat{\gamma}_{s}^{(1)}= \begin{cases}0 & \text { for } s>0, \\ \frac{2(v-1)}{3|s|} & \text { for } s<0 .\end{cases}$
$b_{s>0}^{2}=1+\frac{-(2|s|+1-v) H_{|s|}+(|s|+1-v) H_{|s|+1-v}-(1-v) H_{1-v}}{3|s|} \varepsilon+O\left(\varepsilon^{2}\right)$,
$b_{s<0}^{2}=1+\frac{-(2|s|+v-1) H_{|s|}+(|s|+v-1) H_{|s|+v-1}-(v-1) H_{v-1}}{3|s|} \varepsilon+O\left(\varepsilon^{2}\right)$.

Wess-Zumino monodromy defect

Summary:

- Extract the defect data by computing the inversion formula integral.
- Resum the defect channel to obtain the full correlator.

The full result is not particularly simple:

$$
\begin{aligned}
\mathcal{G}_{\mathrm{WZ}}(x, \bar{x}) & =-\frac{\varepsilon}{3} \frac{\sqrt{x \bar{x}}}{(1-x \bar{x})}[\\
& +x^{v}(1-v)\left(j_{2 v-1, v}(x)-j_{v, v}(x)-H_{v-1} \Phi_{v}(x)+\Phi_{v}(x) \log (x \bar{x})\right) \\
& +\bar{x}^{1-v}(1-v)\left(j_{1-v, 1-v}(\bar{x})-j_{2-2 v, 1-v}(\bar{x})+H_{1-v} \Phi_{1-v}(\bar{x})\right) \\
& +x^{v} \frac{H_{v-1}-H_{2 v-2}+\Phi_{v}(x)-\Phi_{2 v-1}(x)}{1-x} \\
& +\bar{x}^{1-v} \frac{H_{-v}-H_{1-2 v}+\Phi_{1-v}(\bar{x})-\Phi_{2-2 v}(\bar{x})}{1-\bar{x}} \\
& -x^{1-v} \bar{x}^{2-2 v}\left((v-1) J_{2-2 v, 1-v}(\bar{x}, x)+\frac{\Phi_{2-2 v}(\bar{x})-x \Phi_{2-2 v}(x \bar{x})}{1-x}\right) \\
& +x^{2 v-1} \bar{x}^{v-1}\left((v-1) J_{2 v-1, v-1}(x, \bar{x})-\frac{\Phi_{2 v-1}(x)-\bar{x} \Phi_{2 v-1}(x \bar{x})}{1-\bar{x}}\right) \\
& -\bar{x} x^{v+1}\left((v-1) J_{x+1,1}(x, \bar{x})-\frac{\Phi_{v+1}(x)-\bar{x} \Phi_{v+1}(x \bar{x})}{1-\bar{x}}\right) \\
& \left.+x \bar{x}^{2-v}\left((v-1) J_{2-v, 1}(\bar{x}, x)+\frac{\Phi_{2-v}(\bar{x})-x \Phi_{2-v}(x \bar{x})}{1-x}\right)\right] .
\end{aligned}
$$

Wess-Zumino monodromy defect

Summary:

- Extract the defect data by computing the inversion formula integral.
- Resum the defect channel to obtain the full correlator.
- Extract the bulk OPE coefficients.

For the leading bulk operator $\mathcal{O}=(\phi \bar{\phi})$ we find:

$$
\begin{aligned}
\lambda_{\phi \bar{\phi}(\phi \bar{\phi})} a_{(\phi \bar{\phi})} & =\frac{v(v-1)}{2}-\varepsilon \frac{2 v^{3}-4 v^{2}+2 v-1}{6 v} \\
& +\frac{\varepsilon}{3}(v-1)(2 v-1)\left(H_{2 v}+H_{-2 v}-H_{v}-H_{-v}\right) \\
& +O\left(\varepsilon^{2}\right)
\end{aligned}
$$

We can similarly extract other operators.

Conclusions

Our techniques are very general and do not rely on supersymmetry. With similar ideas we bootrapped two-point functions with:

- Monodromy defect in the $O(N)$ Wilson-Fisher fixed point.
- A supersymmetric boundary in the WZ model (see Philine's talk).
- The Maldacena-Wilson line in $\mathcal{N}=4$ SYM (see Julien's talk).

In the future, one can look at other interesting setups:

- Monodromy defects in the $O(N)$ model at large N.
- Surface defects in $\mathcal{N}=4 \mathrm{SYM}$ at strong coupling.
- Half-BPS Wilson lines in ABJM theory.
- And hopefully many more!

