Moduli Stabilization near the Boundary

Damian van de Heisteeg

Based on:

2105.02232 and 2108.11962, with **Brice Bastian** and **Thomas Grimm** work in progress, with **Erik Plauschinn** and **Thomas Grimm**

DESY Theory Workshop: Bright ideas for a dark universe

Setting the stage

Arena: Calabi-Yau compactifications of Type IIB string theory

⇒ Kähler and complex structure deformations produce massless fields in 4d

Three-form flux $G_3 = F_3 - \tau H_3$ induces potential for complex structure moduli (and axio-dilaton) [Gukov, Vafa, Witten, '99]

Our goal: study scalar potential near boundaries away from large complex structure

Moduli stabilization:

- (1) with a small vacuum superpotential [Bastian, Grimm, DH, '21]
- (2) using boundary sl(2)-structures [Grimm, Plauschinn, DH, to appear]

Moduli stabilization (1): small superpotentials

[Bastian, Grimm, DH, '21]

Finding vacua with small superpotentials

• Important step in realizing the KKLT scenario

Recently new methods for constructing such vacua:

- Strategy near large complex structure [Demirtas, Kim, McAllister, Moritz, '19]
- Extended to coni-LCS boundaries [Demirtas, Kim, McAllister, Moritz, '20], [Alvarez-Garcia, Blumenhagen, Brinkmann, Schlechter '20]

For related work see: [Honma, Otsuka, '21], [Demirtas, Kim, McAllister, Moritz, Rios-Tascon '21], [Broeckel, Cicoli, Maharana, Singh, Sinha, '21]

Constructions rely heavily on coefficients κ_{iik} at LCS

⇒ what about other boundaries in moduli space?

Periods near the boundary

• Nilpotent orbit expansion of periods [Schmid, '70]

$$\Omega = \mathbf{\Pi}^{I} \gamma_{I}, \qquad \mathbf{\Pi}(t^{i}) = \mathbf{\Pi}_{pol} + \mathbf{\Pi}_{inst} = e^{t^{i} N_{i}} (\mathbf{a}_{0} + \sum_{r_{i}} e^{2\pi i r_{i} t^{i}} \mathbf{a}_{r_{1} \cdots r_{n}})$$

Periods encode 4d N=1 supergravity data

Kahler potential
$$K = -\log i\langle \bar{\Pi}, \Pi \rangle = -\log \left[K_{\rm pol} + K_{\rm inst} \right]$$

Flux superpotential $W = \langle G_3, \Pi \rangle = W_{\text{pol}} + W_{\text{inst}}$

coordinates t = x + iy:

- $x \rightarrow x + 1$ circles boundary (axion)
- boundary at $y = \infty$ (saxion/dilaton)

• Exponential terms $\mathbf{a}_{r_1 \cdots r_n}$ must be present near boundaries other than LCS

(example: $N\mathbf{a}_0 = 0$ for the conifold point)

fits nicely with [Palti, Vafa, Weigand '20], [Cecotti (1), '20]

• Construct general models for asymptotic one- and two-moduli periods by using boundary classification

[Bastian, Grimm, DH (1), '21]

An example

Consider a two-moduli boundary

(Seiberg-Witten point for
$$\mathbb{P}_4^{1,1,2,2,6}[12]$$
 with $n_2=\frac{1}{4}$) [Kachru, Klemm, Lerche, Mayr, Vafa, '95] [Curio, Klemm, Lüst, Theisen, '00]

$$K = -\log(y_1 + n_2 y_2)$$

Kahler metric is degenerate $K_{ij} = -\partial_i \partial_j \log K_{\text{pol}} = \frac{1}{(y_1 + n_2 y_2)^2} \begin{pmatrix} 1 & n_2 \\ n_2 & (n_2)^2 \end{pmatrix}$

exponential terms must be included at leading order:

$$K_{\text{inst}} = -2a^2 e^{-4\pi y_2} \left(n_1 y_1 + y_2 + \frac{1 - n_1 n_2}{2\pi} \right)$$

Important lessons for scalar potential: $V = e^K K^{IJ} D_I W \overline{D_I W}$

exponential factors cancel $\implies W_{\mathrm{inst}}$ contributes to V_{pol}

Flux vacua with small superpotentials

[Bastian, Grimm, DH (2) '21]

Extremization conditions

- Starting point: $\operatorname{impose} D_I W_{\operatorname{pol}} = 0 \ \operatorname{and} \ W_{\operatorname{pol}} = 0$
- For metric-essential instantons: $V^ID_IW_{\mathrm{inst}}=0$ (V^I : eigenvector of K_{IJ}^{pol} w/ vanishing eigenvalue)
 - Vacuum superpotential $W_0 = \langle W_{\rm inst} \rangle$
 - ullet For boundaries with linear $K_{
 m pol}$: stabilizes all complex structure + axio-dilaton moduli
 - Moduli stabilized by $V_{
 m pol}$: masses of polynomial order
- → no racetrack potential for a perturbatively flat direction
- \implies separation of mass scale compared to Kähler moduli in $W_{\rm np} = W_0 + Ae^{-\rho}$

Moduli stabilization (2): using sl(2)-structures

[Grimm, Plauschinn, DH, to appear]

Asymptotic behavior of the scalar potential

(think of as expansion in
$$\frac{y^{i+1}}{y^i}$$
, $\frac{1}{y^n}$)

Strict asymptotic regime $y^1 \gg ... \gg y^n \gg 1 \implies sl(2)^n$ -structure emerges [Cattani, Kaplan, Schmid '86]

Decompose space of three-forms as $H^3(Y_3,\mathbb{R})=\bigoplus_{\ell_1\cdots\ell_n}V_{\ell_1\cdots\ell_n}$ eigenspaces of sl(2)-weight operators

Scalar potential asymptotes towards:

$$V_{\text{pol}} = \int_{Y_3} \bar{G}_3 \wedge \star G_3 \simeq \langle \bar{G}_3, C_{\text{sl}(2)} G_3 \rangle = \sum_{\ell} (y_1)^{\ell_1} \cdots (y_n)^{\ell_n} \langle \bar{G}_3^{\ell}, C_{\infty} G_3^{\ell} \rangle$$

⇒ can be constructed **explicitly** near any boundary

An example

Two-parameter Calabi-Yau threefold in $\mathbb{P}_4^{1,1,2,2,2,2}[8]$

 \Longrightarrow large complex structure regime $\kappa_{122} = 4$, $\kappa_{222} = 8$

$$C_{\text{pol}} = \\ \begin{pmatrix} 0 & 0 & 0 & -\frac{3}{6y_1y_2^2 + 4y_2^3} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3y_1^2 + 4y_1y_2 + 2y_2^2}{6y_1y_2^2 + 4y_2^3} & \frac{1}{6y_1 + 4y_2} \\ 0 & 0 & 0 & 0 & \frac{1}{6y_1 + 4y_2} & -\frac{3}{12y_1 + 8y_2} \\ \frac{2}{3}y_2^2(3y_1 + 2y_2) & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{6y_2^2}{3y_1 + 2y_2} & \frac{4y_2^2}{3y_1 + 2y_2} & 0 & 0 & 0 & 0 \\ 0 & \frac{4y_2^2}{3y_1 + 2y_2} & \frac{4(3y_1^2 + 4y_1y_2 + 2y_2^2)}{3y_1 + 2y_2} & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $y_1, y_2 \gg 1$

$$\begin{pmatrix}
0 & 0 & 0 & -\frac{1}{2y_1y_2^2} & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{y_1}{2y_2^2} - \frac{1}{9y_1} & \frac{1}{6y_1} \\
0 & 0 & 0 & 0 & \frac{1}{6y_1} & -\frac{1}{4y_1} \\
2y_1y_2^2 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{2y_2^2}{y_1} & \frac{4y_2^2}{3y_1} & 0 & 0 & 0 \\
0 & \frac{4y_2^2}{3y_1} & \frac{8y_2^2}{9y_1} + 4y_1 & 0 & 0 & 0
\end{pmatrix}$$

 $y_1 \gg y_2 \gg 1$

Comparing C_{pol} and $C_{\mathrm{sl(2)}}$ vacua

Families of vacua with: $y_1 = \lambda^2$, $y_2 = \lambda$

⇒ sl(2)-approximation agrees reasonably quickly!

Conclusions

- Modeling asymptotic periods provides us with new exciting setups
 - => exponential corrections open up new windows for pheno applications
 - Vacua with small flux superpotentials
 - Axion monodromy inflation?
 - •

- Asymptotic sl(2)-structures give a systematic approach to moduli stabilization
 - ==> control over scalar potential in complicated moduli spaces

Thanks for your attention!