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Setting the stage

Arena: Calabi-Yau compactifications of Type IIB string theory

—> Kahler and complex structure deformations produce massless fields in 4d

Three-form flux G; = F; — ©H; induces potential for complex structure moduli (and axio-dilaton)
[Gukov, Vafa, Witten, ’99]

Our goal: study scalar potential near boundaries away from large complex structure

LCS ,\

N

using mirror symmetry'

Seiberg-Witten point — log k;;, y'y/y*
i

conifold point



Moduli stabilization:

(1) with a small vacuum superpotential gastian, Grimm, DH, 211

(2) using boundary sI(2)—structureS [Grimm, Plauschinn, DH, to appear]



Moduli stabilization (1): small superpotentials

[Bastian, Grimm, DH, '21]



Finding vacua with small superpotentials

* |Important step in realizing the KKLT scenario

Recently new methods for constructing such vacua:

* Strategy near large complex structure [Demirtas, Kim, McAllister, Moritz, *19]

[Demirtas, Kim, McAllister, Moritz, '20],

* Extended to coni-LCS boundaries [Alvarez-Garcia, Blumenhagen, Brinkmann, Schlechter ’20]

For related work see: [Honma, Otsuka, '21], [Demirtas, Kim, McAllister, Moritz, Rios-Tascon '21], [Broeckel, Cicoli, Maharana, Singh, Sinha, '21]

Constructions rely heavily on coefficients k;;, at LCS

— what about other boundaries in moduli space?



Periods near the boundary

* Nilpotent orbit expansion of periods [Schmid, '70]

| | coordinates t = x + 1y :
N — _ _I'N, 2rir;t! ] - -
O — HI},I, () = Hpol + Hinst — z(ao + Z e~ arl---rn) x = x + 1 circles boundary (axion)

)  boundary at y = oo (saxion/dilaton)

* Periods encode 4d N=1 supergravity data

Kahler potential K = —log i<ﬁ, IT) = — log [Kpol T Kinst]

Flux superpotential W = (G5, IT) = W, + W,

1nst

- Exponential terms a,. ..., must be present near boundaries other than LCS
(example: Na, = O for the conifold point) fits nicely with [Palti, Vafa, Weigand '20], [Cecotti (1), '20]

* Construct general models for asymptotic one- and two-moduli periods by using boundary classification
[Bastian, Grimm, DH (1), '21]



An example

Consider a two-moduli bOundary (Seiberg-Witten point for ﬂj)éll,l,2,2,6[12] with 1, = l) [KaC.hru, Klemm,.!_erche,.Mayr, Vafa, '95]
[Curio, Klemm, LUst, Theisen, '00]

K = —log(y; + n,y,)

1 1 n
—> Kahler metric is degenerate K = — 0,0;log K, > 22
(Y1 + 1)) \ny (1)

—> exponential terms must be included at leading order:

| — n1n2>

Kinst — = 2a26_4ﬂy2(n1y1 T V) 2

Important lessons for scalar potential: V = eXK" DWD;,W

exponential factors cancel =— Winst contributes to Vpol



Flux vacua with small superpotentials
[Bastian, Grimm, DH (2) '21]

Extremization conditions

* Starting point: impose D;W,.; =0 and W, = 0

* For metric-essential instantons: VID,W =( (V!: eigenvector of KIPJOl w/ vanishing eigenvalue)

1nst

» Vacuum superpotential W, = (W. )

» For boundaries with linear Kpol . stabilizes all complex structure + axio-dilaton moduli

» Moduli stabilized by V,; : masses of polynomial order

—> no racetrack potential for a perturbatively flat direction

—> separation of mass scale compared to Kahler moduliin W, = W, + Ae™



Moduli stabilization (2): using sl(2)-structures

[Grimm, Plauschinn, DH, to appear]



Asymptotic behavior of the scalar potential

| oyt
(think of as expansion in —, ; )
ooy

Strict asymptotic regime yl > ...>V'>1 = sl(2)"-structure emerges [Cattani, Kaplan, Schmid '86]

Decompose space of three-forms as H*(Y3,R)=®,,.., V, ., v

eigenspaces of sl(2)-weight operators

Scalar potential asymptotes towards:

VPol — J G3 A *Gg = <C_;3, Csl(z) G3> = Z (yl)fl...(yn)fn <(_;f, Coo G§>
Y3 p

—> can be constructed explicitly near any boundary



An example

Two-parameter Calabi-Yau threefold in Pi’1’2’2’2’2[8]

—> large complex structure regime «j,, =4, Ky, =38
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Comparing C,,,; and C,) vacua

Families of vacua with:  y, = A%, y, = 4
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—> sl(2)-approximation agrees reasonably quickly!



Conclusions

 Modeling asymptotic periods provides us with new exciting setups

—> exponential corrections open up new windows for pheno applications

* Vacua with small flux superpotentials
* Axion monodromy inflation?

* Asymptotic sl(2)-structures give a systematic approach to moduli stabilization

—> control over scalar potential in complicated moduli spaces

Thanks for your attention!



