Constructing the 6 Loop $\mathcal{N} = 4$ sYM Integrand

Alex Edison

with John Joseph Carrasco & Henrik Johansson 2110.xxxx

+ Bram Verbeek 2xxx.xxxxx

UPPSALA UNIVERSITET

Motivations

Goal of program: UV behavior of 7 loop $\mathcal{N}=8$ SUGRA Why?

- SUSY arguments predict L = 7 counterterm in $D_c = 4$ (Bossard, Howe, Stelle; Green, Russo, Vanhove; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; many more)
- Similar counterterms proven absent for $\mathcal{N} = 4,5$ at $L = \mathcal{N} 1$ (Bossard, Howe, Stelle, Vanhove; Bern, Davies, Dennen; Bern, Davies, Dennen, Huang)
- Improved behavior observed in D = 4 kinematics (AE, Hermann, Parra-Martinez, Trnka)

History of direct calculations:

- 1&2 loops '80 -'90s (Green, Schwarz, Brink; Bern, Dixon, Dunbar, Perelstein, Rozowsky)
- 3 loops '07-'10 (Bern, Carrasco, Dixon, Johansson, Kosower, Roiban)
- 4 loops '09-'12 (Bern, Carrasco, Dixon, Johansson, Roiban)
- 5 loops 2018 (Bern, Carrasco, Chen, AE, Johansson, Parra-Martinez, Roiban, Zeng)

Motivations

Goal of program: UV behavior of 7 loop $\mathcal{N}=8$ SUGRA Why?

- SUSY arguments predict L = 7 counterterm in $D_c = 4$ (Bossard, Howe, Stelle; Green, Russo, Vanhove; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; many more)
- Similar counterterms proven absent for $\mathcal{N} = 4,5$ at $L = \mathcal{N} 1$ (Bossard, Howe, Stelle, Vanhove; Bern, Davies, Dennen; Bern, Davies, Dennen, Huang)
- Improved behavior observed in D = 4 kinematics (AE, Hermann, Parra-Martinez, Trnka)
- History of direct calculations:
 - 1&2 loops '80 '90s (Green, Schwarz, Brink; Bern, Dixon, Dunbar, Perelstein, Rozowsky)
 - 3 loops '07-'10 (Bern, Carrasco, Dixon, Johansson, Kosower, Roiban)
 - 4 loops '09-'12 (Bern, Carrasco, Dixon, Johansson, Roiban)
 - 5 loops 2018 (Bern, Carrasco, Chen, AE, Johansson, Parra-Martinez, Roiban, Zeng)

Computational Challenges

Obstacle	Solution			
Many Feynman diagrams,	Cuts contain minimal needed data			
cancellations between dia-				
grams				
Cuts from state sums: 256 _states per cut propagator	Double copy: $GR = YM^2$			
sYM state sums still hard, rapidly exploding Dirac traces	Color-kinematics + tricks for special cuts			
Problems with CK at 5L – still need to solve previous prob- lems	New recursive tools for cuts & integrands			

X Identity

Four-point ordered YM tree amplitudes only have s and t channel poles.

What if we try to "sit on the *u* pole" anyway, via $p_3 \rightarrow p_1, p_4 \rightarrow p_2$?

X Identity

Four-point ordered YM tree amplitudes only have s and t channel poles.

What if we try to "sit on the *u* pole" anyway, via $p_3 \rightarrow p_1, p_4 \rightarrow p_2$?

Dimensionless, must respect all symmetries:

X Identity

Four-point ordered YM tree amplitudes only have s and t channel poles.

What if we try to "sit on the *u* pole" anyway, via $p_3 \rightarrow p_1, p_4 \rightarrow p_2$?

Dimensionless, must respect all symmetries: Can only get identity insertions! The diagram disconnects!

H Identity

Can we find a similar identity that maintains planarity?

- Consider $s_{13}A(1,3,2,4)|_{p_3=p_1}$: cut with zero momentum exchange
- Apply $s_{13}A(1,3,2,4) = s_{14}A(1,2,3,4)$ with X ID:

H Identity

Can we find a similar identity that maintains planarity?

- Consider $s_{13}A(1,3,2,4)|_{p_3=p_1}$: cut with zero momentum exchange
- Apply $s_{13}A(1,3,2,4) = s_{14}A(1,2,3,4)$ with X ID:

H Identity

Can we find a similar identity that maintains planarity?

- Consider $s_{13}A(1,3,2,4)|_{p_3=p_1}$: cut with zero momentum exchange
- Apply $s_{13}A(1,3,2,4) = s_{14}A(1,2,3,4)$ with X ID:

Same for all other supersymmetric states. Extends to (super)gravity. N.B.: Physical identity (soft factorization), not heuristic rule.

AE

(Bern et al)

Systematic integrand construction from cuts

- Enumerate diagram basis, striate by cut depth (k)
 - Build all cubic vacuums
 - Attach four external legs
 - 8 Collapse internal legs
 - Cubic = max; one quartic = next-to-max; ...
 - e Each diagram γ corresponds to both a cut and a numerator
 - Proceed by cut level, matching cuts by inheriting poles from lower-k and constructing new numerators

ocal polynomial

(Bern et al)

Systematic integrand construction from cuts

- Enumerate diagram basis, striate by cut depth (k)
 - Build all cubic vacuums
 - Attach four external legs
 - 8 Collapse internal legs
 - Oubic = max; one quartic = next-to-max; ...
- **2** Each diagram γ corresponds to both a cut and a numerator
- Proceed by cut level, matching cuts by inheriting poles from lower-k and constructing new numerators

Systematic integrand construction from cuts

- Enumerate diagram basis, striate by cut depth (k)
 - Build all cubic vacuums
 - Attach four external legs
 - 8 Collapse internal legs
 - Oubic = max; one quartic = next-to-max; ...
- **2** Each diagram γ corresponds to both a cut and a numerator
- Proceed by cut level, matching cuts by inheriting poles from lower-k and constructing new numerators

$$\mathcal{P}_{\gamma,\mathsf{ans}}^{(k)} = \mathcal{C}_{\gamma}^{(k)} - \mathcal{R}_{\gamma,\mathsf{MMC}}^{(k)}$$

(Bern et al)

(Bern et al)

Systematic integrand construction from cuts

- Enumerate diagram basis, striate by cut depth (k)
 - Build all cubic vacuums
 - Attach four external legs
 - 8 Collapse internal legs
 - Oubic = max; one quartic = next-to-max; ...
 - **2** Each diagram γ corresponds to both a cut and a numerator
 - Proceed by cut level, matching cuts by inheriting poles from lower-k and constructing new numerators

$$\mathcal{P}_{\gamma,\text{ans}}^{(k)} = \mathcal{C}_{\gamma}^{(k)} - \mathcal{R}_{\gamma,\text{MMC}}^{(k)}$$
Trying to determine Need to eval Known higher cuts: $\sum \frac{n}{p^2}$

Integrand Search Space

N^(k)MC 0 1 2 3 4 5 \sum # cuts 5548 41649 131907 216961 202271 107945 706,281

Integrand Search Space

Integrand Search Space

cuts 5548 41649 131907 216961 202271 107945 706,281

Applications of X ID in MMC

X Identity: Evaluate $C^{(k)}$ directly from limit of higher-loop cut

Challenges:

- Edge crossing is NP-Hard¹
- Quickly outpace known planar cuts (11+ loops)
- Only works for color-ordered cuts

¹ex: There're better crossing schemes than in the diagram. Can you find one?

AE

Applications of X ID in MMC

X Identity: Evaluate $C^{(k)}$ directly from limit of higher-loop cut

Challenges:

- Edge crossing is NP-Hard¹
- **2** Quickly outpace known planar cuts (11+ loops)
- Only works for color-ordered cuts

¹ex: There're better crossing schemes than in the diagram. Can you find one?

AE

Applications of H ID in MMC

H Identity: Evaluate \mathcal{P} via constraining limits, on which $\mathcal{C}_{\gamma}^{(k)} \to \mathcal{C}_{\gamma_{L-1}}^{(k)}$

Challenges:

- Need to merge conditions
- 2 Many evaluations of lower-loop cuts

Applications of H ID in MMC

H Identity: Evaluate \mathcal{P} via constraining limits, on which $\mathcal{C}_{\gamma}^{(k)} \to \mathcal{C}_{\gamma_{L-1}}^{(k)}$

Challenges:

- Need to merge conditions
- 2 Many evaluations of lower-loop cuts

AE

6L Numerator Construction

Resolving the conditions

Fix a basis of momentum invariants $\lim_{\ell_m\to 0}$ induces linear relations between invariants: π_{ℓ_m}

- Brute force: use an ansatz
 - \mathcal{P}_{ans} as literal polynomial ansatz in basis
 - H ID gives linear equations between ansatz parameters
- More clever: intersection of polynomial ideals

$$\pi_{\ell_m} \mathcal{P}_{\gamma,ans}^{(k)} = h_{\gamma,\ell_m} \mathcal{C}_{\gamma\setminus\ell_m}^{(k)} - \pi_{\ell_m} \mathcal{R}_{\gamma,MMC}^{(k)}$$

$$\Rightarrow \mathcal{P}_{\gamma,ans}^{(k)} = \pi_{\ell_m} \mathcal{P}_{\gamma,ans}^{(k)} + \ker \pi_{\ell_m} \subset \left\langle \pi_{\ell_m} \mathcal{P}_{\gamma,ans}^{(k)} , \pi_{\ell_m} \right\rangle$$

$$\mathcal{P}_{\gamma,ans}^{(k)} \sim \bigcap_{\ell_m \in \gamma} \left\langle \pi_{\ell_m} \mathcal{P}_{\gamma,ans}^{(k)} , \pi_{\ell_m} \right\rangle$$

Resolving the conditions

- Fix a basis of momentum invariants
- $\lim_{\ell_m \to 0}$ induces linear relations between invariants: π_{ℓ_m}
 - Brute force: use an ansatz
 - \mathcal{P}_{ans} as literal polynomial ansatz in basis
 - H ID gives linear equations between ansatz parameters
 - More clever: intersection of polynomial ideals

$$\pi_{\ell_m} \mathcal{P}_{\gamma,ans}^{(k)} = h_{\gamma,\ell_m} \mathcal{C}_{\gamma\setminus\ell_m}^{(k)} - \pi_{\ell_m} \mathcal{R}_{\gamma,MMC}^{(k)}$$

$$\Rightarrow \mathcal{P}_{\gamma,ans}^{(k)} = \pi_{\ell_m} \mathcal{P}_{\gamma,ans}^{(k)} + \ker \pi_{\ell_m} \subset \left\langle \pi_{\ell_m} \mathcal{P}_{\gamma,ans}^{(k)}, \pi_{\ell_m} \right\rangle$$

$$\mathcal{P}_{\gamma,ans}^{(k)} \sim \bigcap_{\ell_m \in \gamma} \left\langle \pi_{\ell_m} \mathcal{P}_{\gamma,ans}^{(k)}, \pi_{\ell_m} \right\rangle$$

Resolving the conditions

Fix a basis of momentum invariants

 $\lim_{\ell_m \to 0}$ induces linear relations between invariants: π_{ℓ_m}

- Brute force: use an ansatz
 - \mathcal{P}_{ans} as literal polynomial ansatz in basis
 - H ID gives linear equations between ansatz parameters
- More clever: intersection of polynomial ideals

$$\begin{aligned} \pi_{\ell_m} \mathcal{P}_{\gamma,\text{ans}}^{(k)} &= h_{\gamma,\ell_m} \mathcal{C}_{\gamma\backslash\ell_m}^{(k)} - \pi_{\ell_m} \mathcal{R}_{\gamma,\text{MMC}}^{(k)} \\ \Rightarrow \mathcal{P}_{\gamma,\text{ans}}^{(k)} &= \pi_{\ell_m} \mathcal{P}_{\gamma,\text{ans}}^{(k)} + \ker \pi_{\ell_m} \subset \left\langle \pi_{\ell_m} \mathcal{P}_{\gamma,\text{ans}}^{(k)} , \pi_{\ell_m} \right\rangle \\ \mathcal{P}_{\gamma,\text{ans}}^{(k)} &\sim \bigcap_{\ell_m \in \gamma} \left\langle \pi_{\ell_m} \mathcal{P}_{\gamma,\text{ans}}^{(k)} , \pi_{\ell_m} \right\rangle \end{aligned}$$

N^kM	0	1	2	3	4	5	\sum
						107945	
non-zero contacts	4420	16776	37373	53472	32465	0	144,506

Fits on a CD!

Contact terms carry ladder color factors

- Longest numerator: 62,511 terms
- Shortest numerator: 1 term (ladder diagrams)
- Average numerator: 90 terms

Looking Forward

- UV Integration
- Prepping tools for SUGRA: KLT, IBPs
- Improve efficiency for 7 loops
 - Intersection of ideals is senstive to many superficial choices
 - Minimize number of limts to evaluate
 - Ansatz requires efficient inversion/row reduction
- Application to other theories: QCD, open string eff.
- Cubic representation: generalized double-copy, color-kinematics duality?

Thanks!

Questions?

UPPSALA UNIVERSITET