Constructing the 6 Loop $\mathcal{N}=4$ sYM Integrand

Alex Edison with
John Joseph Carrasco \& Henrik Johansson 2110.xxxxx
+ Bram Verbeek 2xxx.xxxxx

Motivations

Goal of program: UV behavior of 7 loop $\mathcal{N}=8$ SUGRA Why?

- SUSY arguments predict $L=7$ counterterm in $D_{c}=4$ (Bossard, Howe, Stelle; Green, Russo, Vanhove; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; many more)
- Similar counterterms proven absent for $\mathcal{N}=4,5$ at $L=\mathcal{N}-1$ (Bossard, Howe, Stelle, Vanhove; Bern, Davies, Dennen; Bern, Davies, Dennen, Huang)
- Improved behavior observed in $D=4$ kinematics (AE, Hermann, Parra-Martinez, Trnka)

Motivations

Goal of program: UV behavior of 7 loop $\mathcal{N}=8$ SUGRA Why?

- SUSY arguments predict $L=7$ counterterm in $D_{c}=4$ (Bossard, Howe, Stelle; Green, Russo, Vanhove; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; many more)
- Similar counterterms proven absent for $\mathcal{N}=4,5$ at $L=\mathcal{N}-1$ (Bossard, Howe, Stelle, Vanhove; Bern, Davies, Dennen; Bern, Davies, Dennen, Huang)
- Improved behavior observed in $D=4$ kinematics (AE, Hermann, Parra-Martinez, Trnka)
History of direct calculations:
- $1 \& 2$ loops '80 -'90s (Green, Schwarr, Brink; Bern, Dixon, Dunbar, Perelstein, Rozowsky)
- 3 loops '07-'10 (Bern, Carrasco, Dixon, Johansson, Kosower, Roiban)
- 4 loops '09-'12 (Bern, Carrasco, Dixon, Johansson, Roiban)
- 5 loops 2018 (Bern, Carrasco, Chen, AE, Johansson, Parra-Martinez, Roiban, Zeng)

Computational Challenges

Obstacle	Solution
Many Feynman diagrams, cancellations between diagrams	Cuts contain minimal needed data
Cuts from state sums: 256 states per cut propagator	Double copy: $\mathrm{GR}=\mathrm{YM}^{2}$

sYM state sums still hard, Color-kinematics + tricks for special cuts rapidly exploding Dirac traces

Problems with CK at 5L - still
New recursive tools for cuts \& integrands need to solve previous problems

X Identity

Four-point ordered YM tree amplitudes only have s and t channel poles.
What if we try to "sit on the u pole" anyway, via $p_{3} \rightarrow p_{1}, p_{4} \rightarrow p_{2}$?

X Identity

Four-point ordered YM tree amplitudes only have s and t channel poles.
What if we try to "sit on the u pole" anyway, via $p_{3} \rightarrow p_{1}, p_{4} \rightarrow p_{2}$?
Dimensionless, must respect all symmetries:

X Identity

Four-point ordered YM tree amplitudes only have s and t channel poles.

What if we try to "sit on the u pole" anyway, via $p_{3} \rightarrow p_{1}, p_{4} \rightarrow p_{2}$?

Dimensionless, must respect all symmetries: Can only get identity insertions! The diagram disconnects!

Same for all other supersymmetric states

H Identity

Can we find a similar identity that maintains planarity?

- Consider $\left.s_{13} A(1,3,2,4)\right|_{p_{3}=p_{1}}$: cut with zero momentum exchange - Apply $s_{13} A(1,3,2,4)=s_{14} A(1,2,3,4)$ with X ID:

H Identity

Can we find a similar identity that maintains planarity?

- Consider $\left.s_{13} A(1,3,2,4)\right|_{p_{3}=p_{1}}$: cut with zero momentum exchange
- Apply $s_{13} A(1,3,2,4)=s_{14} A(1,2,3,4)$ with X ID:

H Identity

Can we find a similar identity that maintains planarity?

- Consider $\left.s_{13} A(1,3,2,4)\right|_{p_{3}=p_{1}}$: cut with zero momentum exchange
- Apply $s_{13} A(1,3,2,4)=s_{14} A(1,2,3,4)$ with X ID:

e.g.: $\quad s_{13} A(1,3,2,4)=\frac{t_{8} F^{4}}{s_{23}} \xrightarrow{p_{3}=p_{1}}$

$s_{14}\left(\epsilon_{1} \cdot \epsilon_{3}\right)\left(\epsilon_{2} \cdot \epsilon_{4}\right)$

Same for all other supersymmetric states. Extends to (super)gravity. N.B.: Physical identity (soft factorization), not heuristic rule.

Method of Maximal Cuts

Systematic integrand construction from cuts (1) Enumerate diagram basis, striate by cut depth (k)
(1) Build all cubic vacuums
(2) Attach four external legs
(3) Collapse internal legs
(4) Cubic $=$ max; one quartic $=$ next-to-max; \ldots
 from lower- k and constructing new numerators

Method of Maximal Cuts

Systematic integrand construction from cuts
(1) Enumerate diagram basis, striate by cut depth (k)
(1) Build all cubic vacuums
(2) Attach four external legs
(3) Collapse internal legs
(4) Cubic $=$ max; one quartic $=$ next-to-max; \ldots
(2) Each diagram γ corresponds to both a cut and a numerator
3 Proceed by cut level, matching cuts by inheriting poles from lower- k and constructing new numerators

Method of Maximal Cuts

Systematic integrand construction from cuts
© Enumerate diagram basis, striate by cut depth (k)
(1) Build all cubic vacuums
(2) Attach four external legs
(3) Collapse internal legs
(4) Cubic $=$ max; one quartic $=$ next-to-max; \ldots
(2 Each diagram γ corresponds to both a cut and a numerator
© Proceed by cut level, matching cuts by inheriting poles from lower- k and constructing new numerators

Method of Maximal Cuts

Systematic integrand construction from cuts
© Enumerate diagram basis, striate by cut depth (k)
(1) Build all cubic vacuums
(2) Attach four external legs
(3) Collapse internal legs
(4) Cubic = max; one quartic $=$ next-to-max; \ldots
(2) Each diagram γ corresponds to both a cut and a numerator
© Proceed by cut level, matching cuts by inheriting poles from lower- k and constructing new numerators
Trying to determine $\quad \mathcal{P}_{\gamma, \text { ans }}^{(k)}=\mathcal{C}_{\gamma}^{(k)}-\mathcal{R}_{\gamma, \mathrm{MMC}}^{(k)} \underbrace{}_{\text {Known higher cuts: }} \sum \frac{n}{p^{2}}$

Integrand Search Space

Integrand Search Space

Integrand Search Space

Applications of X ID in MMC

X Identity: Evaluate $\mathcal{C}^{(k)}$ directly from limit of higher-loop cut

Challenges:
(1) Edge crossing is NP-Hard ${ }^{1}$
(2) Quickly outpace known planar cuts ($11+$ loops)
(3) Only works for color-ordered cuts

Applications of X ID in MMC

X Identity: Evaluate $\mathcal{C}^{(k)}$ directly from limit of higher-loop cut

Challenges:
(1) Edge crossing is NP-Hard ${ }^{1}$
(2) Quickly outpace known planar cuts (11+ loops)
(3) Only works for color-ordered cuts
${ }^{1} \mathrm{ex}$: There're better crossing schemes than in the diagram. Can you find one?

Applications of H ID in MMC

H Identity: Evaluate \mathcal{P} via constraining limits, on which $\mathcal{C}_{\gamma}^{(k)} \rightarrow \mathcal{C}_{\gamma_{L-1}}^{(k)}$

Challenges:

(1) Need to merge conditions
(2) Many evaluations of lower-loop cuts

Applications of H ID in MMC

H Identity: Evaluate \mathcal{P} via constraining limits, on which $\mathcal{C}_{\gamma}^{(k)} \rightarrow \mathcal{C}_{\gamma_{L-1}}^{(k)}$

Challenges:
(1) Need to merge conditions
(2) Many evaluations of lower-loop cuts

6L Numerator Construction

Resolving the conditions
Fix a basis of momentum invariants
$\lim _{\ell \rightarrow 0}$ induces linear relations between invariants: $\pi_{\ell_{m}}$ $\ell_{m} \rightarrow 0$

```
Brute force: use an ansatz
- }\mp@subsup{\mathcal{P}}{\mathrm{ ans }}{}\mathrm{ as literal polynomial ansatz in basis
- H ID gives linear equations between ansatz parameters
More clever: intersection of polynomial ideals
```


Resolving the conditions

Fix a basis of momentum invariants
$\lim _{\ell_{m} \rightarrow 0}$ induces linear relations between invariants: $\pi_{\ell_{m}}$

- Brute force: use an ansatz
- $\mathcal{P}_{\text {ans }}$ as literal polynomial ansatz in basis
- H ID gives linear equations between ansatz parameters
- More clever: intersection of polynomial ideals

Resolving the conditions

Fix a basis of momentum invariants
$\lim _{\ell_{m} \rightarrow 0}$ induces linear relations between invariants: $\pi_{\ell_{m}}$

- Brute force: use an ansatz
- $\mathcal{P}_{\text {ans }}$ as literal polynomial ansatz in basis
- H ID gives linear equations between ansatz parameters
- More clever: intersection of polynomial ideals

$$
\begin{aligned}
& \pi_{\ell_{m}} \mathcal{P}_{\gamma, \text { ans }}^{(k)}=h_{\gamma, \ell_{m}} \mathcal{C}_{\gamma \ell_{m}}^{(k)}-\pi_{\ell_{m}} \mathcal{R}_{\gamma, M M C}^{(k)} \\
& \Rightarrow \mathcal{P}_{\gamma, a n s}^{(k)}=\pi_{\ell_{m}} \mathcal{P}_{\gamma, \text { ans }}^{(k)}+\operatorname{ker} \pi_{\ell_{m}} \subset\left\langle\pi_{\ell_{m}} \mathcal{P}_{\gamma, a n s}^{(k)}, \pi_{\ell_{m}}\right\rangle \\
& \mathcal{P}_{\gamma, a n s}^{(k)} \sim \bigcap_{\ell_{m} \in \gamma}\left\langle\pi_{\ell_{m}} \mathcal{P}_{\gamma, \text { ans }}^{(k)}, \pi_{\ell_{m}}\right\rangle
\end{aligned}
$$

The 6L Integrand

$N^{k} M$	0	1	2	3	4	5	\sum
cuts	5548	41649	131907	216961	202271	107945	706,281
non-zero contacts	4420	16776	37373	53472	32465	0	144,506

Fits on a CD!
Contact terms carry ladder color factors

- Longest numerator: 62,511 terms
- Shortest numerator: 1 term (ladder diagrams)
- Average numerator: 90 terms

Looking Forward

- UV Integration
- Prepping tools for SUGRA: KLT, IBPs
- Improve efficiency for 7 loops
- Intersection of ideals is senstive to many superficial choices
- Minimize number of limts to evaluate
- Ansatz requires efficient inversion/row reduction
- Application to other theories: QCD, open string eff.
- Cubic representation: generalized double-copy, color-kinematics duality?

Thanks!

Questions?

