

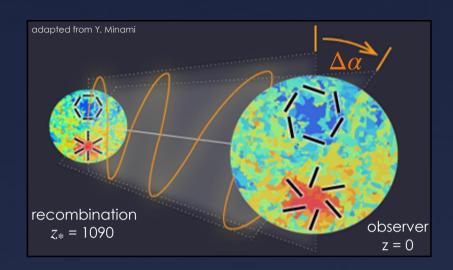





#### **Pranjal Trivedi**

University of Hamburg Hamburg Observatory




### Cosmological Birefringence from Axions

Inhomogeneous axion (or axion-like) field a

- --> optically active medium
- -> rotation of polarization of light (birefringence)

<u>achromatic</u> effect (cf. Faraday rotation  $\propto 1/\lambda^2$ )

[Carroll, Field & Jackiw 90, Carrol & Field 91, Harari & Sikivie 92, Carroll 98, Lue, Wang & Kamionkowski 99, Liu+ 06, Feng+ 06, Finelli & Galaverni 09, Arvanitaki+ 10, Galaverni+ 15, Fedderke, Graham & Rajendran 19, Fujita+ 20]



$$\Delta \alpha \simeq \frac{g_{a\gamma}}{2} \int_C d\eta \ n^\mu \partial_\mu a \simeq \frac{g_{a\gamma}}{2} \Delta a$$

$$g_{a\gamma} = \frac{s\alpha_{\rm em}}{2\pi f_a}$$

$$\Delta a = [a(z_*) - a_{\text{local}}]$$

$$\rho_a = (1/2) \, m_a^2 \, a^2$$

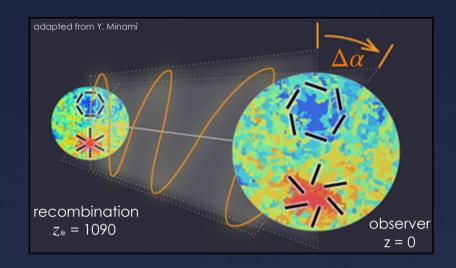
Earlier picture

 $10^{-33}\,\mathrm{eV} \lesssim m_a \lesssim 10^{-28}\,\mathrm{eV}$  :  $a \longrightarrow$  cosmological birefringence. But a cannot be DM at CMB epoch

 $m_a \gtrsim 10^{-28}\,{
m eV}$  : a can be DM - but birefringence considered suppressed  $T_a(m_a) \ll \Delta au_{
m rec}$ 

(rapid oscillations of a during  $\Delta \tau_{\rm rec,99\%} \sim 0.5\,{\rm Myr})$ 

$$T_a = 2\pi/m_a \simeq (1 \text{ year})(1.22 \times 10^{-22} \text{ eV})/m_a$$


# Birefringence from oscillating Axion DM

Inhomogeneous axion (or axion-like) field a

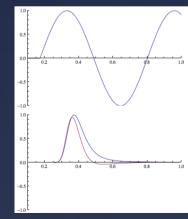
- --> optically active medium
- -> rotation of polarization of light (birefringence)

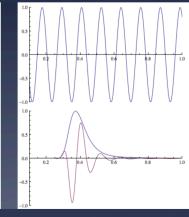
<u>achromatic</u> effect (cf. Faraday rotation  $\propto 1/\lambda^2$ )

[Carroll, Field & Jackiw 90, Carrol & Field 91, Harari & Sikivie 92, Carroll 98, Lue, Wang & Kamionkowski 99, Liu+ 06, Feng+ 06, Finelli & Galaverni 09, Arvanitaki+ 10, Galaverni+ 15, Fedderke, Graham & Rajendran 19, Fujita+ 20]

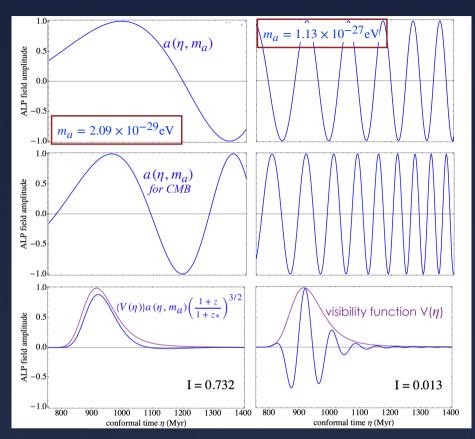


$$\Delta \alpha \simeq \frac{g_{a\gamma}}{2} \int_C d\eta \ n^\mu \partial_\mu a \simeq \frac{g_{a\gamma}}{2} \Delta a$$


$$g_{a\gamma} = \frac{s\alpha_{\rm em}}{2\pi f_a}$$


$$\Delta a = [a(z_*) - a_{\text{local}}]$$

$$\rho_a = (1/2) \, m_a^2 \, a^2$$


#### • This work:

- Consider **oscillating** a(t),  $\omega_a=m_{a'}$  phase, start of oscillation
- Recombination Visibility fn.  $V(\eta)$  from Planck, local obs. Window W(t)
- Difference of recombination & local signals
- Obs. CMB are photons arriving together from across  $V(\eta)$





### Axion DM Birefringence

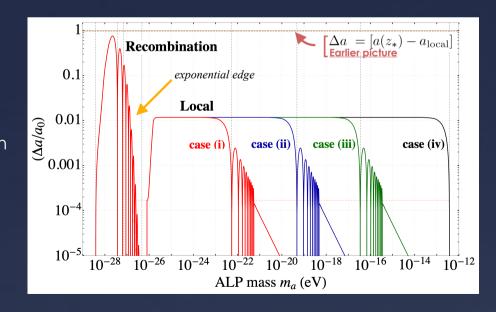


#### Our recent work:

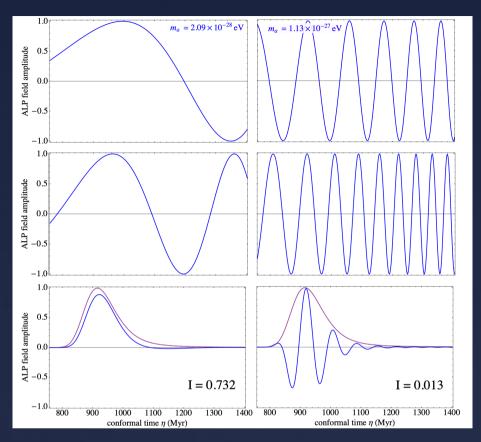
- Consider **oscillating** a(t),  $\omega_a = m_a$ , phase, start of oscillation
- Recombination **Visibility**  $V(\eta)$ , local Window W(t)
- Obs. CMB are photons arriving together from across  $V(\eta)$
- Difference of recombination & local signals: birefringence

Instead of 
$$\Delta a = [a(z_*) - a_{\mathrm{local}}]$$

eg. Fedderke, Graham & Rajendran 19; Fujita+ 20]


#### We find

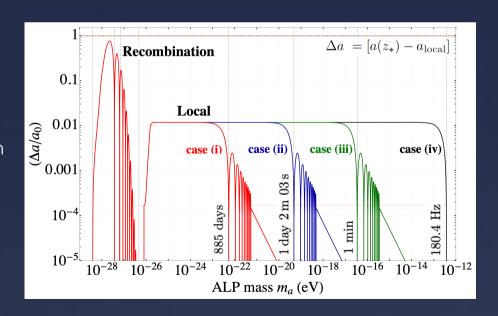
$$\Delta a = \left| egin{array}{c} \int V(\eta) \, a(\eta, m_a) \Big(rac{1+z}{1+z_*}\Big)^{3/2} d\eta \ \int V(\eta) \, d\eta \end{array} 
ight| - \left| egin{array}{c} \int W(t) \, a(t) \, dt \ rac{\log z}{1+z_*} \end{array} 
ight|.$$


#### where

$$a(\eta, m_a) = \Theta \left[ \eta - \eta_{\text{osc}} \left( m_a \right) \right] \times a_0 \cos \left[ m_a \{ \eta - \eta_{\text{osc}} \left( m_a \right) - \left( \eta_{\text{peak}} - \eta \right) \right] + \delta_0 \right],$$

$$a_0 = \int\limits_{\mathrm{rec.}} \delta(\eta - \eta_*) \, a(\eta) d\eta$$

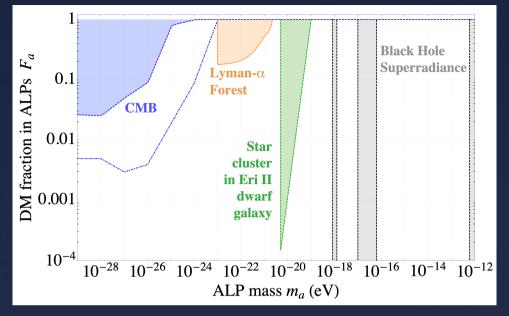



### Axion DM Birefringence

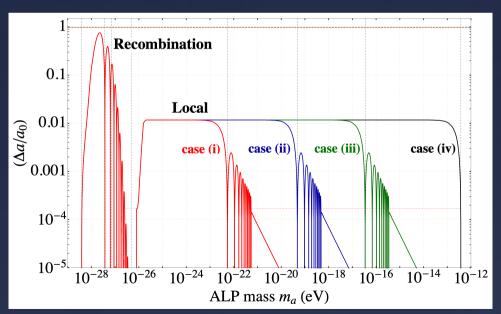


| • C      | \iir       | ro         | 0        | nŧ       | NAZ. | <u>orl</u> | <b>,</b> • |
|----------|------------|------------|----------|----------|------|------------|------------|
| <u> </u> | <u>/UI</u> | <u>। ੮</u> | <u> </u> | <u> </u> | AA.  | <u> </u>   | <u> </u>   |

- Consider **oscillating** a(t),  $\omega_a = m_{a'}$  phase, start of oscillation
- Recombination **Visibility**  $V(\eta)$ , local Window W(t)
- Obs. CMB are photons arriving together from across  $V(\eta)$
- Difference of recombination & local signals: birefringence


| Time scale                              | Planck                                     | Corresponding                   | Time Period                   |
|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------|
| or                                      | Mission                                    | ALP mass                        | $T_a(m_a) =$                  |
| Frequency                               | value                                      | $m_a  ({ m eV})$                | $2\pi/m_a$ (yr)               |
| $\mathcal{T}_{\mathrm{full \ survey}}$  | 885  days                                  | $5.41 \times 10^{-23}$          | 2.423                         |
| $\mathcal{T}_{	ext{time-ordered data}}$ | $1\mathrm{day}\ 2\mathrm{m}\ 03\mathrm{s}$ | $4.78 \times 10^{-20}$          | $2.74 \times 10^{-3}$         |
| $\mathcal{T}_{	ext{rotation}}$          | $1 \min$                                   | $3.45 \times 10^{-17  \dagger}$ | $3.80 \times 10^{-6}$ †       |
| $\mathcal{F}_{	ext{sampling}}$          | $180.4~\mathrm{Hz}$                        | $3.73 \times 10^{-13  \dagger}$ | $3.51 \times 10^{-10\dagger}$ |

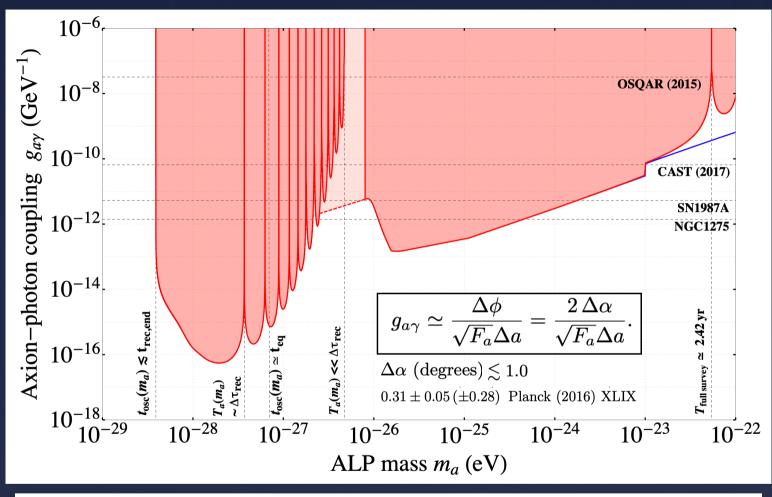



### Constraints on the Fraction of ALP DM included

Constraints already exist on the DM fraction possible as ALPs

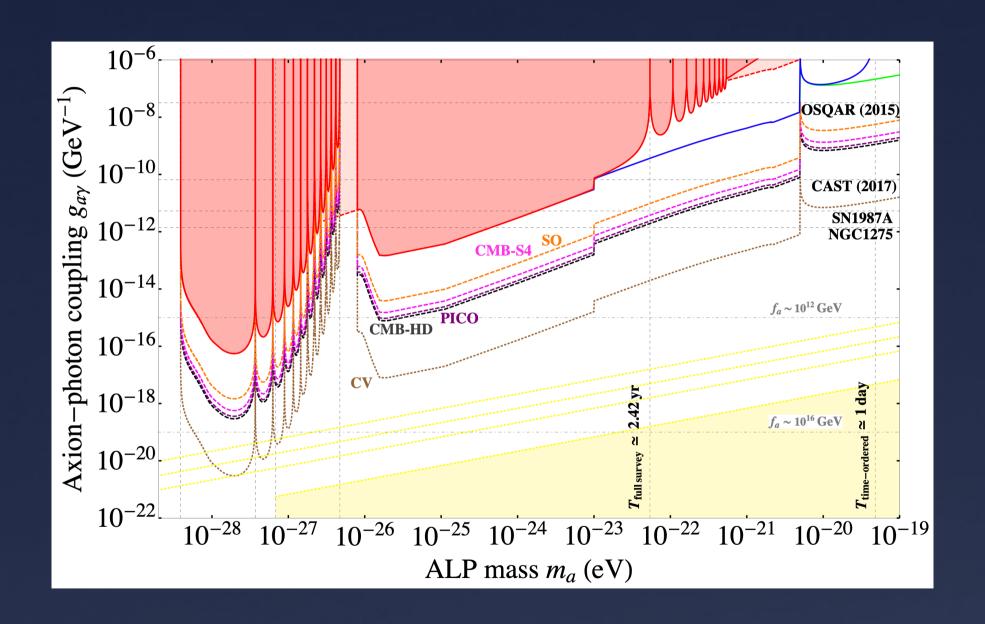
Pranjal Trivedi (University of Hamburg)



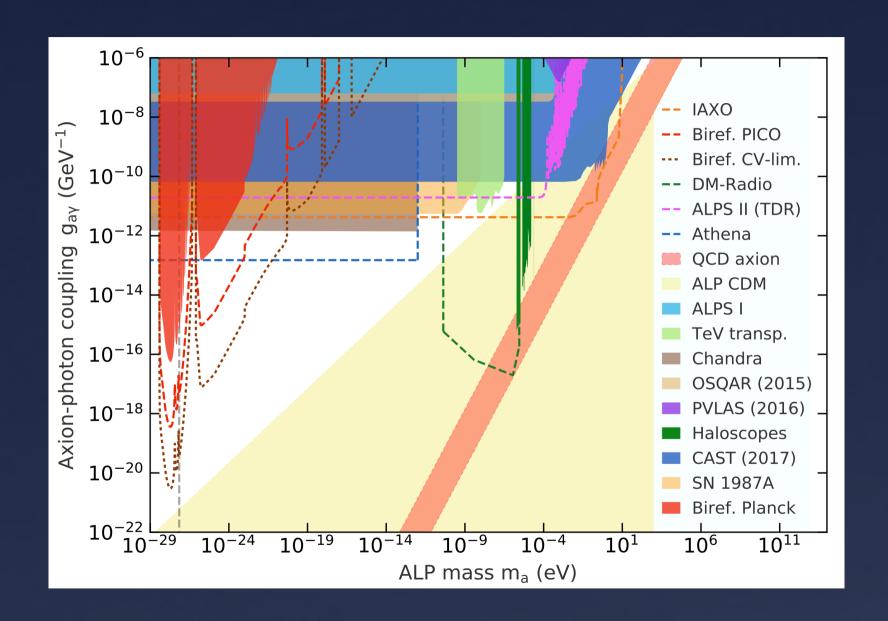

$$F=\Omega_a/\Omega_c$$
  $\sqrt{F_a}$  multiplies  $(\Delta a/a_0)$  below



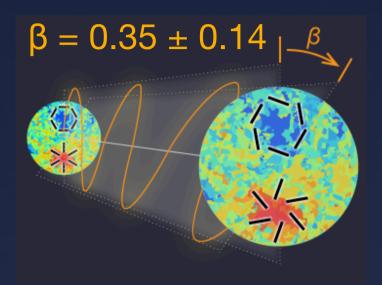
Lowering DM fraction --> only mild weakening of signal


To give constraints on axion-photon coupling.....

# Isotropic Birefringence Constraints




| Cosmological                                      | Corresponding         | Time Period      | Redshift of  | Oscillation Epoch                       | Feature produced in the                     |
|---------------------------------------------------|-----------------------|------------------|--------------|-----------------------------------------|---------------------------------------------|
| Epoch $t$ or                                      | ALP mass              | $T_a(m_a) =$     | Oscillation  | $t_{ m osc} = 	au_{ m age}(z_{ m osc})$ | Birefringence Signal $\Delta a$             |
| Time scale $	au$                                  | $m_a  ({ m eV})$      | $2\pi/m_a$ (Myr) | $z_{ m osc}$ | (Myr)                                   | from Recombination                          |
| $\overline{t_{osc}(m_a) \lesssim t_{ m rec,end}}$ | $3.9 \times 10^{-29}$ | 3.4              | 600          | 0.99                                    | $a_{ m rec}$ signal rises above zero        |
| $T_a(m_a)/2 \lesssim \Delta 	au_{ m rec}$         | $1.7 \times 10^{-28}$ | 0.75             | 1530         | 0.21                                    | maximum $a_{\rm rec}$ signal at 1st peak    |
| $T_a(m_a) \sim \Delta 	au_{ m rec}$               | $2.6 \times 10^{-28}$ | 0.50             | 1950         | 0.14                                    | 1st null of $a_{\rm rec}$ signal            |
| $t_{ m osc}(m_a)=t_{ m eq}$                       | $6.8 \times 10^{-28}$ | 0.19             | 3400         | 0.051                                   | T-indep. $m_a$ limit: std. ALP DM           |
| $T_a(m_a) \ll \Delta 	au_{ m rec}$                | $2.9 \times 10^{-27}$ | 0.046            | 7570         | 0.012                                   | exponential damping of $a_{\rm rec}$ signal |
|                                                   |                       |                  |              |                                         |                                             |


## Isotropic Birefringence Forecasts



## Isotropic Birefringence Forecasts



### Hint!? of Cosmic Birefringence



Breakthrough analysis of Planck 2018 CMB polarization data

Compared Birefringence from  $\underline{\mathsf{CMB}} \leftrightarrow \underline{\mathsf{Galactic}}$  CMB foreground

- -> isolated detector (HFI) miscalibration angle uncertainty
- -> reduced systematic error by x 2

Y. Minami

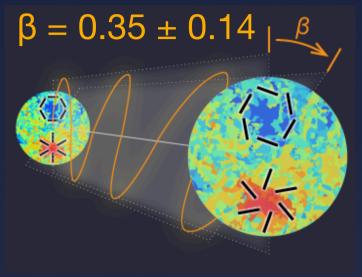
cf.  $0.31 \pm 0.05 \, (\pm 0.28)$  Planck Collaboration I. XLIX 2016

PHYSICAL REVIEW LETTERS 125, 221301 (2020)

**Editors' Suggestion** 

Featured in Physics

New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data


Yuto Minami<sup>®</sup>

High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

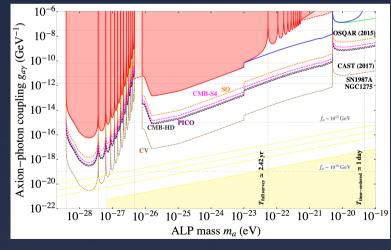
Eiichiro Komatsuo†

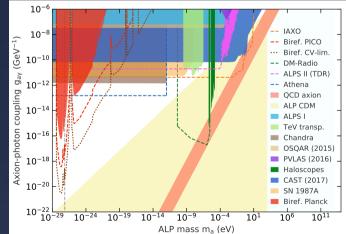
We search for evidence of parity-violating physics in the Planck 2018 polarization data and report on a new measurement of the cosmic birefringence angle  $\beta$ . The previous measurements are limited by the systematic uncertainty in the absolute polarization angles of the Planck detectors. We <u>mitigate this systematic uncertainty completely</u> by simultaneously determining  $\beta$  and the angle miscalibration using the observed cross-correlation of the *E*- and *B*-mode polarization of the cosmic microwave background and the Galactic foreground emission. We show that the systematic errors are effectively mitigated and achieve a factor-of-2 smaller uncertainty than the previous measurement, finding  $\beta = 0.35 \pm 0.14$  deg (68% C.L.), which excludes  $\beta = 0$  at 99.2% C.L. This corresponds to the statistical <u>significance</u> of  $2.4\sigma$ .

### Interpretation of Cosmic Birefringence



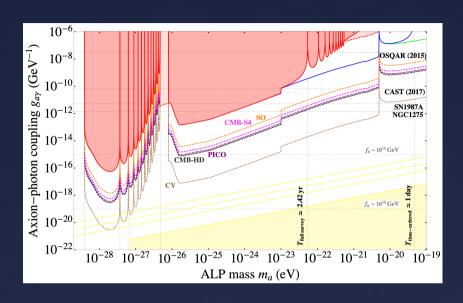
#### **Critical Assessment**

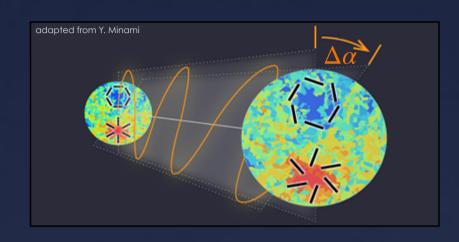

- Dust effects: full investigation (see recent Galactic dust EB Clark+ 2105.00120)
- Foreground effects and EB
- Fresh look at systematics, instrument modelling
- Low significance 2.4 $\sigma$  : needs to be compared to other CMB data
- Independent Verification!


Future Observations: SO, BICEP Array, CMB-S4, CMB-HD, LiteBIRD, PICO

Y. Minami

cf.  $0.31 \pm 0.05 \, (\pm 0.28)$  Planck Collaboration I. XLIX 2016


#### Our theory constraints & forecasts:






### Summary

### CMB Birefringence probe of Axion(-like) Dark Matter





- Cosmic birefringence constraints are <u>upto 4 orders</u> <u>stronger</u> than x-ray AGN in cluster constraints (Chandra).
- Mass scales probed by CMB in log  $(m_a/eV)$ -29 to -27 and -26 to -21 (upto FDM)
- CMB-S4, PICO, CMB-HD can all improve by 1-2 orders of mag. in axion-photon coupling
- Exciting obs. hint of 0.35 (0.14) isotropic birefringence
   if confirmed could reveal axions contributing to dark matter

#### CMB Birefrengence robust probe of aDM:

#### **Independent of**

- Astrophysical magnetic fields, unknown P\_B (k)
- DM density assumptions/enhancements/spikes
- Astrophysical polarised source

