Bubble wall velocities in local thermal equilibrium

Wen-Yuan Ai CP3, UC Louvain *C*

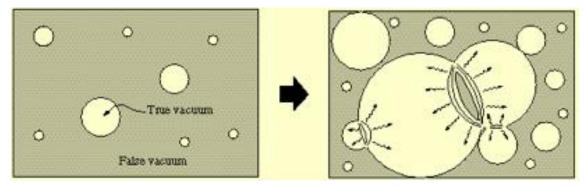
Based on: arXiv: 2109.xxxx

In collaboration with: Björn Garbrecht, Carlos Tamarit

September 23, DESY Hamburg

Cosmological first-order phase transitions

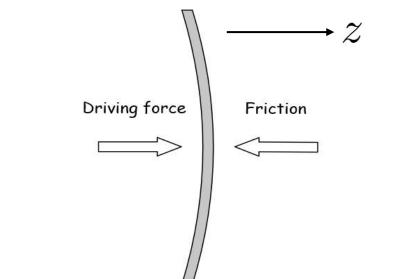
In many BSM models, the cosmological phase transition of electroweak symmetry breaking is of first order



Possible phenomenological consequences: electroweak baryogenesis, GW production

Experiment projects : LISA, BBO, DECIGO, Taiji, and Tianqin...

In both the above phenomena, the bubble wall velocity is an important parameter



Recently, Mancha, Prokopec & Swiezewska, JHEP 01 (2021) 070 proposed that in local thermal equilibriuim

$$\frac{F_{\text{back}}}{A} = (\gamma_w^2 - 1)T\Delta s$$

Recently, Mancha, Prokopec & Swiezewska, JHEP 01 (2021) 070 proposed that in local thermal equilibrium

$$\frac{F_{\text{back}}}{A} = (\gamma_w^2 - 1)T\Delta s$$

Recently, Mancha, Prokopec & Swiezewska, JHEP 01 (2021) 070 proposed that in local thermal equilibrium

$$\frac{F_{\text{back}}}{A} = (\gamma_w^2 - 1)T\Delta s$$

How to derive?

The energy-momentum tensors read

$$T^{\mu\nu}_{\phi} = (\partial^{\mu}\phi)\partial^{\nu}\phi - g^{\mu\nu}\left(\frac{1}{2}(\partial\phi)^2 - V(\phi)\right)$$
$$T^{\mu\nu}_{f} = (\rho_f + p_f)u^{\mu}u^{\nu} - p_f g^{\mu\nu}$$

Then from $abla_{\mu}T^{\mu0} = 0$ and $abla_{\mu}T^{\mu3} = 0$, one obtains $\omega\gamma^2 v = \mathrm{const}$ $\omega\gamma^2 v^2 + \frac{1}{2} (\partial_z \phi(z))^2 + p = \mathrm{const}$ where $\omega = \rho_f + p_f, \ p = p_f - V(\phi)$

This leads the following two well-known matching conditions

$$\omega_{+}\gamma_{+}^{2}v_{+} = \omega_{-}\gamma_{-}^{2}v_{-}$$
$$\omega_{+}\gamma_{+}^{2}v_{+}^{2} + p_{+} = \omega_{-}\gamma_{-}^{2}v_{-}^{2} + p_{-}$$

From the second condition, one can identify (recall $\omega=Ts$) Balaji, Spannowsky & Tamarit, 2021

$$\frac{F_{\text{pressure}}}{A} \equiv -\Delta p , \qquad \frac{F_{\text{back}}}{A} = \Delta \{ (\gamma^2 - 1)Ts \}$$

This leads the following two well-known matching conditions

$$\omega_{+}\gamma_{+}^{2}v_{+} = \omega_{-}\gamma_{-}^{2}v_{-}$$
$$\omega_{+}\gamma_{+}^{2}v_{+}^{2} + p_{+} = \omega_{-}\gamma_{-}^{2}v_{-}^{2} + p_{-}$$

From the second condition, one can identify (recall $\omega=Ts$) Balaji, Spannowsky & Tamarit, 2021

$$\frac{F_{\text{pressure}}}{A} \equiv -\Delta p \,, \qquad \frac{F_{\text{back}}}{A} = \Delta \{ (\gamma^2 - 1)Ts \}$$

In local equilibrium, we have Review: Hindmarsh, Lüben, Lumma & Pauly 2020

$$\partial_{\mu}S^{\mu} \equiv \partial_{\mu}(su^{\mu}) = 0 \quad \Rightarrow \quad s(z)\gamma(z)v(z) = \text{const}$$

Together with $\gamma^2 - 1 = \gamma^2 v^2$, one obtains

$$\frac{F_{\text{back}}}{A} = \text{const} \times \Delta\{\gamma vT\}$$

Further, divide the first condition by the above new condition, we have

$$\gamma(z)T(z) = \text{const}$$

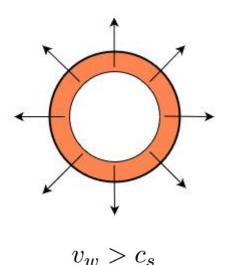
A new matching condition in local equilibrium

Therefore, non-constant plasma temperature is necessary!

In local equilibrium, there is a new matching condition

$$\gamma_+ T_+ = \gamma_- T_-$$

Detonation:



Moore & Prokopec, 1995 Kurki-Suonio & Laine, 1996 Espinosa, Konstandin, No & Servant, 2010 Konstandin & No, 2011

A new matching condition in local equilibrium

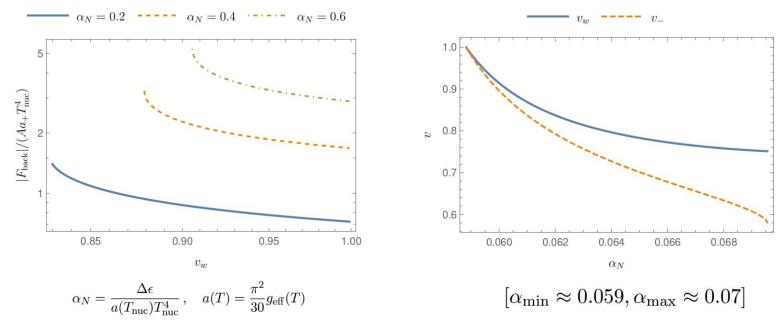
Therefore, non-constant plasma temperature is necessary!

Moore & Prokopec, 1995 Kurki-Suonio & Laine, 1996 Espinosa, Konstandin, No & Servant, 2010 Konstandin & No, 2011

In local equilibrium, there is a new matching condition

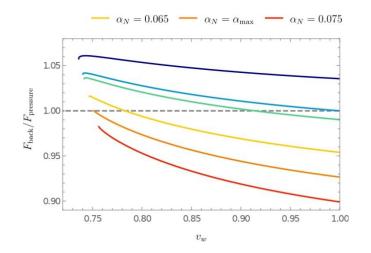
$$\gamma_+ T_+ = \gamma_- T_-$$

Detonation:



Bubble wall velocity in local equilibrium

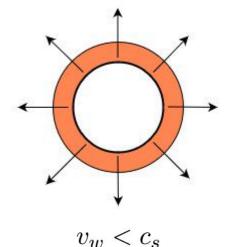
Balance of the forces:



 $\alpha_N = 0.055$ — $\alpha_N = \alpha_{\min}$

 $--- \alpha_N = 0.06$

Deflagration:



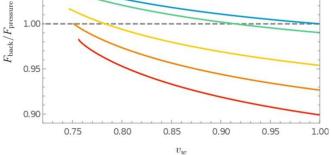
 \Box Need to relate T_+ , α_+ to $T_{
m nuc}$ and α_N

For simplicity, we used the planar-wall approximation

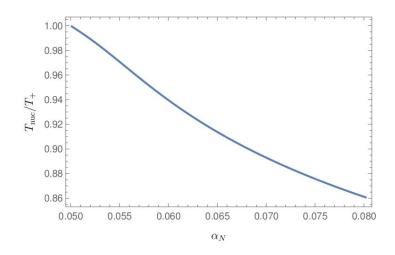
Bubble wall velocity in local equilibrium

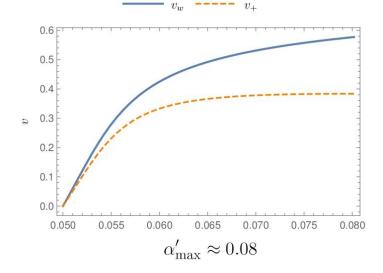
Balance of the forces:

 $\alpha_N = 0.055 \qquad \alpha_N = \alpha_{\min} \qquad \alpha_N = 0.06$ $\alpha_N = 0.065 \qquad \alpha_N = \alpha_{\max} \qquad \alpha_N = 0.075$ 1.05



Deflagration:





Conclusions

- There can be an effective friction in local thermal equilibrium, but non-constant plasma temperature across the bubble wall is a necessary condition
- We proposed a new matching condition for the plasma hydrodynamic quantities in local equilibrium $\gamma_+T_+ = \gamma_-T_-$
- The backreaction force in local equilibrium decreases in the detonation regime as the bubble wall velocity increases
- In local thermal equilibrium, there is a critical phase transition strength $\alpha_{\rm crit} = \alpha'_{\rm max}$, below which the bubble wall does not run away while above which the bubble wall does run away

