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Some puzzles for physics beyond the Standard Model

Neutrino masses
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Leptogenesis mechanisms

102

106

1010

MM [GeV ]

[Fukugita/Yanagida ’86]
thermal

leptogenesis

M1 > 109 GeV

[Davidson/Ibarra ’02]

[Liu/Segrè ’93...]
[Pilaftsis ’97]

[Pilaftsis/Underwood ’04;’05]
resonant

leptogenesis

[Akhmedov/Rubakov/Smirnov ’98]
[Asaka/Shaposhnikov ’05]
leptogenesis via oscillations

Sakharov conditions

1. Baryon number violation
sphaleron processes

2. C and CP violation
RHN decays and oscillations

3. Deviation from thermal equilibrium
freeze-in and freeze-out of RHN

• for hierarchical RHN M1 & 109 GeV

• leptogenesis works in a wide range of RHN masses

• how are the low-scale mechanisms connected?
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Resonant leptogenesis

• the BAU is mainly produced in RHN decays

• The lepton asymmetries follow the equation

dY`a

dz
= −εa

ΓN

Hz
(YN − Y eq

N ) − WabY`b

RHN decays

The key quantity determining the BAU is the decay asymmetry

εa ≡
ΓN→la − ΓN→l̄a

ΓN→la + ΓN→l̄a

= 1
8π

Im(F †F )2
12

(F †F )11

M1M2
M2

1 − M2
2

Becomes enhanced if M2 → M1 [(baryogenesis) Kuzmin ’70] [(leptogenesis:)

Liu/Segrè/Flanz/Paschos/Sarkar/Weiss/Covi/Roulet/Vissani/Pilaftsis/Underwood/Buchmüller/Plumacher…]

This enhancement is known as resonant leptogenesis.

• divergent when M2 = M1?

• divergence is unphysical — it needs to be regulated!
• this process can instead be described with density matrix equations
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Leptogenesis via oscillations
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Quantum Kinetic Equations (QKEs)

System of QKEs

i
dn∆α

dt
= −2i

µα

T

∫
d3k

(2π)3
Tr [Γα] fN (1 − fN )

+ i

∫
d3k

(2π)3
Tr

[
Γ̃α (ρ̄N − ρN )

]
,

i
dρN

dt
= [HN , ρN ] −

i

2

{
Γ, ρN − ρ

eq
N

}
−

i

2

∑
α

Γ̃α

[
2

µα

T
fN (1 − fN )

]
,

i
dρ̄N

dt
= − [HN , ρ̄N ] −

i

2

{
Γ, ρ̄N − ρ

eq
N

}
+

i

2

∑
α

Γ̃α

[
2

µα

T
fN (1 − fN )

]
,

• coupled system of
integro-differential equations
for the lepton flavor
asymmetries n∆α

, and the
helicity-dependent HNL density
matrices ρN and ρ̄N

• HNL oscillations described by
the effective hamiltonian HN

• equilibration described by
helicity and flavor-dependent
matrices Γ [see Mikko Laine’s talk]
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Quantum Kinetic Equations (QKEs)
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• similar sets of equations
derived using different
strategies for both regimes

• for resonant leptogenesis
relativistic corrections were
typically negligible
helicity effects could be
neglected ρN ≈ ρ̄N

∗

• leptogenesis via oscillations
assumed ultra-relativistic HNLs
non-relativistic corrections found to be
important in recent years

[Hambye/Teresi ’16; Laine/Ghiglieri ’17;

Eijima/Shaposhnikov ’17]

• gradual convergence towards
the same set of equations
[also see Giovanni Zattera’s talk]
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The low-scale leptogenesis mechanisms

Resonant leptogenesis
• often sufficient to use decay
asymmetries εa

• conceptual issues arise when
M2 → M1

• relativistic effects can typically
be neglected

• heavy neutrino decays require
M & T , not clear what happens
for M . 130 GeV

Leptogenesis via oscillations
• initial conditions are crucial, all
BAU is generated during RHN
equilibration (freeze-in)

• important to distinguish the
helicities of the RHN

• the decay of the RHN
equilibrium distribution can
typically be neglected ˙Y eq

N ≈ 0

• both can be described by the same density-matrix
equations

7



The parameter space of low-scale leptogenesis

Resonant leptogenesis
• early estimates lead to successful leptogenesis
for O(200) GeV [Pilaftsis/Underwood ’05]

• different GeV-scale mechanism proposed in
[Hambye/Teresi ’16; ’17]

• results not fully consistent with the
density-matrix treatment at the O(10) GeV scale?

Leptogenesis via oscillations
• for MM > MW new channels open up

• large equilibration rates for both FNV and FNC
processes

• generically we have ΓN /H & 30 for
T ∼ 150 GeV, M ∼ 80 GeV

• early estimate
[Blondel/Graverini/Serra/Shaposhnikov 2014]

• Baryogenesis window closes at
MM ∼ 80 GeV?

• with three RHN shown to work for MM ≥ T eV

[Garbrecht 2014]

A quantitative study is necessary! 8



Study of the parameter space

• we use a single set of equations for both leptogeneses
• for M � T we recover resonant leptogenesis
• for M � T we recover leptogenesis via oscillations

• we separate the freeze-in and freeze-out regimes
• for thermal initial conditions freeze-out is the only source
of BAU: “resonant” leptogenesis dominates

• for vanishing initial conditions with ˙Y eq
N → 0 freeze-in is

the only source of BAU: LG via oscillations dominates
• biggest challenge: rates!

• so far estimates of the rates only exist for M � T and M � T

• we combine the two by extrapolating the relativistic rate and adding it to
the non-relativistic decays

• we perform a comprehensive numerical scan over the
parameters between 0.1GeV < MM < 10 TeV

9



Results: Minimal model with 2 heavy neutrinos
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10−1
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[ JK/Shaposhnikov/Timiryasov 2008.13771 and 2103.16545]

• the baryogenesis window remains
open!

• two main contributions to the BAU,
from freeze-in and freeze-out

• there is significant overlap of the
two regimes

• in resonant leptogenesis freeze-out (HNL decays) dominates,
we can start with thermal initial conditions YN (0) = Y eq

N

• leptogenesis via oscillations is freeze-in dominated,
YN (0) = 0, we set the “source” term to dY eq

N /dz → 0 by hand
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Results: Model with 3 heavy neutrinos
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[ Drewes/Georis/JK 2106.16226]

• for experimentally accessible heavy neutrino masses, all U2 are allowed
• both freeze-in and freeze-out leptogeneses already testable at existing experiments
• the maximal value of U2 depends on mlightest 11
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Conclusions

• resonant leptogenesis and leptogenesis through neutrino
oscillations are really two regimes of the same mechanism

• freeze-out (thermal initial conditions) leptogenesis is already
possible for GeV-scale heavy neutrinos

• freeze-in leptogenesis remains important at the TeV-scale and
beyond (initial conditions matter)

• leptogenesis is a viable baryogenesis mechanism for all
experimentally accessible heavy neutrino masses

• for three neutrinos, allowed mixing angles can be several orders
of magnitude larger

• leptogenesis is testable at existing and planned future
experiments

• there is synergy between high-energy and high-intensity
experiments!

• together they cover a significant portion of the parameter
space of low-scale leptogenesis 12



Thank you!
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Slices of the parameter space
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M= 10.0 GeV

• two characteritic mass
splittings

• mass splitting induced by
the Higgs ∆Mθθ

• mass splitting induced by
RG running δMRG
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Extrapolating the rates to the non-relativistic regime

• helicity-dependent rates
unknown outside of the
relativistic regime

• we extrapolate the
relativistic rate

• combine this result with the
1 ↔ 2 rate

• in the broken phase the
situation is more involved

• large FNV contribution from
mixing with light neutrinos

• indirect contribution is
enhanced when MN ∼ g2T

Symmetric phase of the SM:



Extrapolating the rates to the non-relativistic regime

• helicity-dependent rates
unknown outside of the
relativistic regime

• we extrapolate the
relativistic rate
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