

DESY – HU – Hamburg – Zeuthen ATLAS Group Meeting

Hamburg, February 13, 2007

Martin zur Nedden Christiane Risler Gordon Fischer Humboldt-Universität zu Berlin

HLT Data Quality Monitoring

Info to be monitored, ideas and examples:

<u>Slices</u>

- B-slice
- Ε/γ
- τ
- Jets (L2 und EF)
- Muon
- E_T miss

info to be monitored depends on / should be provided by PESA algorithms

common info for all slices:

- η, ϕ, N_{object}
- cut variables

specific info for different slices:

B-slice: p_T^{rel} , $p_T\mu$, I_p , J/ψ sec. vertex

E/ γ : Etot, hadronic E fraction, cluster shape, track-cluster matching,

 $M_{\gamma\,\gamma}$, M_{ee}

 τ : muon multiplicity Nµ, E_T miss shower shapes,

cluster-track matching, M_{τ}

Jets: R, E_T , M_{jj} μ slice: $M_{\mu\mu}$ E_T miss: $E_x^2 + E_y^2$, ΣE_T , leakage

- HLT Steering drives the data flow through LVL2 and EF
- We need information of processor farm performance and decision monitoring (rates and quality)
- Need to control the data flow rates through the system

Trigger Steering

- Monitoring code is separated in LVL2 & EF part
- Small classes with 2-3 remits only are produced
- Whole monitoring code works in the *nightlies* and is available in ATHENA in release 13
- We have now availability of rejection power, number of accepted events per chain, signature and trigger elements
- And in addition the number of real events is accessible

Event Rate for Event Filter

Nr of active Trigger Elements

Rejection power of LVL2 (before passthrough and prescale)

Rate Calculation: time stamp vs. processor time

Time of Event-header:

Measurement:

Rate of events accepted for physics processes (trigger selectivity)

Advantage:

precise (~ ns) fast available

Disadvantage:

Time is fixed for the whole process

Processor Time:

Measurement:

Rate of events processed on individual CPU (processor farm performance)

Advantage:

Generates the best rate for technical monitoring

Disadvantage:

Determination takes to long (some μ s)!

- Also rate histograms for *each lumi* block needed to store in the database
- Idea : (not finished yet)
- Create each histogram as an array of histograms of the same type and fill hist_x for lumi block number x (already in the code)
- Perhaps problematic for online monitoring:
- overlapping of several adjacent lumi blocks
- (but solvable with statistic!)

- Rate (steering) monitoring in good shape
- Code will be fully available for release 13
- Next steps: Luminosity blocks, test on the processor farm in Zeuthen (atlhlt[1-5])
- Test with "real" data stream (MC instead of dummies events and trigger set up)
- Data Quality Monitoring:
 - Meeting with experts from CERN at Zeuthen at 28th of Feb.
 and 1st of March (every one is welcome to contribute!)
 - Conceptual discussion ongoing

- For rate calculation use the time stamp and processor time as crosscheck!
- Update of processor time for every 75 event

- Processor time and Time stamp also insert in the code
- Time information in form of a 1-bit histograms available