Fast LAr Shower Simulation

Wolfgang Ehrenfeld, Alexandre Glazov, Ringailė Plačakytė

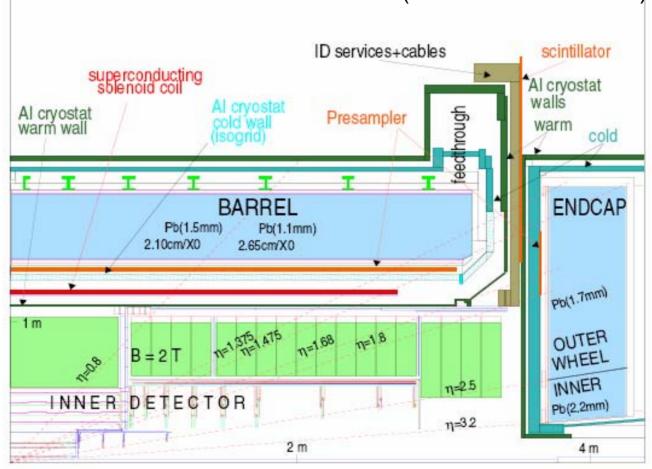
Introduction

- → Idea of Frozen Showers
- → Implementation and performance
- \rightarrow Usage
- \rightarrow Summary

Frozen Showers (FS)

- → Full simulation of typical QCD event in ATLAS LAr calorimeter takes ~15 min
 - → large part of this time is electromagnetic shower simulation

Solutions:

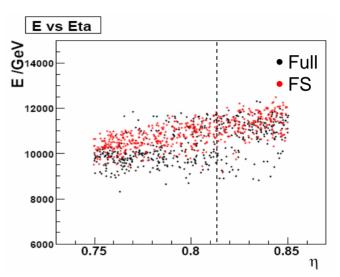

- → Parameterisation of the shower (Grindhammer)
- → "Frozen shower library":
 - full simulation down to 1 GeV cut-off
 - pre-stored shower library of compressed GEANT hits
 - → speed up MC events simulation
 - → shower shapes should be well described compared to full simulation

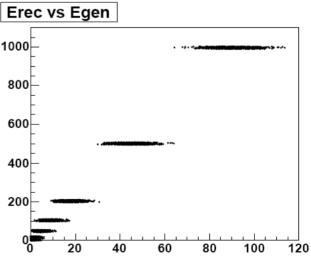
- → Separately simulate and record (once) GEANT hits, store compressed information (LArG4GenShowerLib)
- → Retrieve hits instead of shower parametrisation, binning, transition, rotation, ... (LArG4ShowerLibSvc)
- → Do fast simulation (LArG4FastSimulation)
- → LArG4ShowerLib contains the library and shower classes

done in:

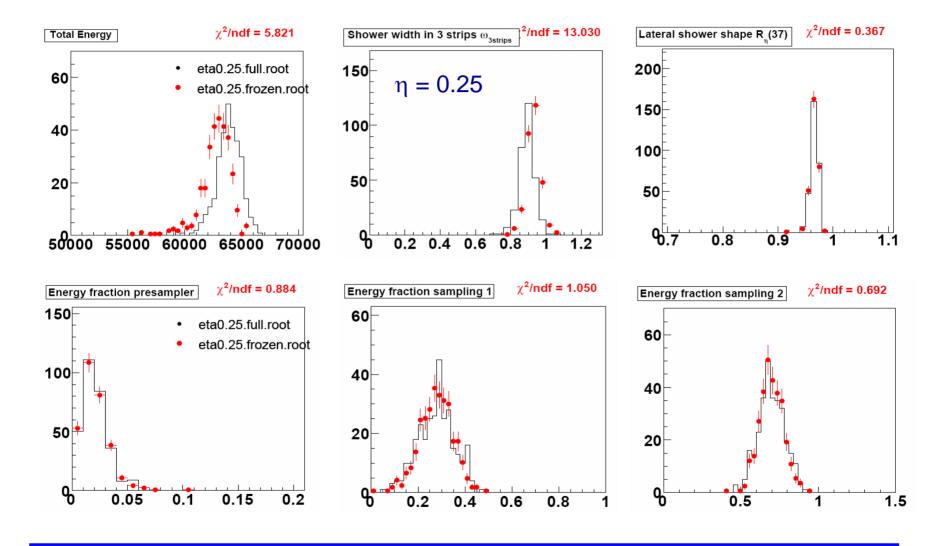
- → η bins (takes into account changing LAr structure)
 - \rightarrow linear extrapolation at the calorimeter surface is done for tracks between two η bins: $|\eta_1| < |\eta| < |\eta_2|$
 - \rightarrow probability to take bin₁: P = $|\eta_2|$ $|\eta|$ / $|\eta_2|$ $|\eta_1|$
- → E bins covers large range of particle energies (from 10 up to 1000 MeV)
- → In each E bin typically 1000 showers are stored with a list of hits together with their position (X,Y,Z) and E

→ Presently Frozen Showers are implemented and working for LAr Barrel and EMEC calorimeters (FCAL to be included)

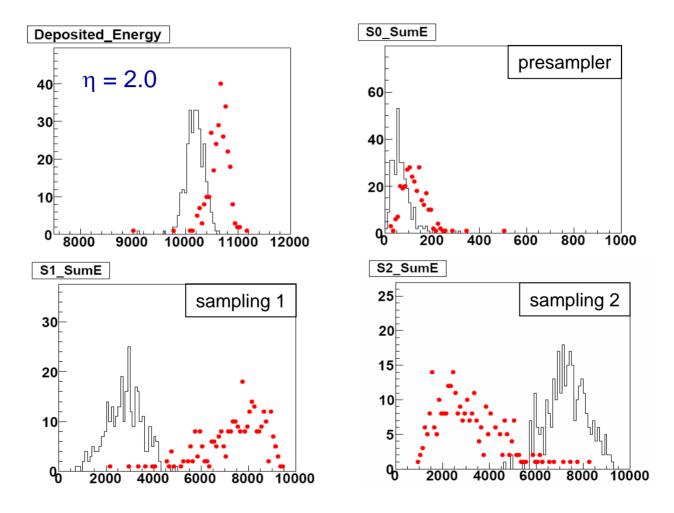

→ Barrel:


η binning (7):

0.1 0.3 0.5 0.81 0.83 1.1 1.3
E binning: 10 20 50 100 200 500 1000 (1000 events per bin)

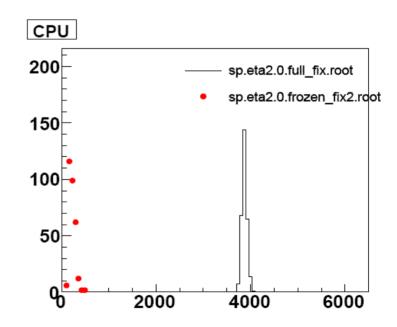

\rightarrow EMEC:

η binning (5): 1.6 2.0 2.4 2.6 3.0 E binning: 10 20 50 100 200 500 1000 (1000 events per bin)



Performance of Frozen Showers: Shower Shapes in EMB

Performance of Frozen Showers: Shower Shapes in EMEC



→ some problems (i.e. energy sharing in different compartments) to be solved

Performance of Frozen Showers: Timing

Average time required to simulate an electron from interaction point with E = 64 GeV

	η	time, s	
		full	FS
EMB	0.25	~ 20	1.2
EMEC	2.0	~ 39	2.3

Usage of Frozen Showers

To achieve the best timing and shower description following methods could be combined:

- → full simulation
- → parametrisation
- → Frozen Showers

4. ...

 \rightarrow there is no final strategy yet ...

Summary

- → Frozen Showers are implemented and working for EMB and EMEC calorimeters
 - → show good performance and excellent timing
- → Still some work to be done:
 - → needs more testing (EMEC) and tuning of existing FS
 - → understanding FCAL and implementing FS
- → Final strategy to be discussed with collaborators and PWG ... (something for coming ATLAS LAr week)