γ-ray deposition histories of core collapse supernovae

Amir Sharon

Advisor: Doron Kushnir

MMS Annual Meeting

August 2020

SNe light curves strongly depend on the γ -ray deposition function

During the SN, ⁵⁶Ni is synthesized, and decays via:

56
Ni \rightarrow 56 Co \rightarrow 56 Fe

with $t_{1/2}$ of 6 day and 77 day, respectively.

The decay product are γ -rays and positrons that heat the ejecta. The deposited energy is:

$$Q_{\rm dep} = Q_{\gamma} f_{\rm dep} + Q_{\rm post}$$

where f_{dep} is the deposition function. At most times $Q_{pos} \simeq 0.03 Q_{\gamma}$.

At late times, $L(t) = Q_{dep}(t)$, so the deposition function has a large impact on the shape of the light curve.

The deposition fraction is parametrized by the γ -ray escape time t_0

- At early times, γ -rays are trapped and $f_{dep} = 1$.
- At late times, the optical depth $\tau \propto \rho r \propto r^{-2} \propto t^{-2}$, so the deposition fraction is $f_{dep} = t_0^2/t^2$
- An interpolating function was used to connect the optically thick and thin regions:

$$f_{\rm dep} = 1 - e^{-t_0^2/t^2}$$

A method to directly measure t_0 is based on the Katz integral (Katz et al 2013):

$$\frac{Q_{\rm dep}}{\int_0^t Q_{\rm dep} t' dt'} = \frac{L}{\int_0^t Lt' dt'}, \quad \text{at} \quad L(t) = Q_{\rm dep}(t)$$

Type Ia SNe t_0 values found by this method were 35 - 40 day.

What is it good for?

- $t_0 \propto M/\sqrt{E_{\rm kin}}$ fundamental properties of the SNe.
- No complicated radiation transfer simulations
- Can constrain models

Can we apply it for other types of SNe?

Yes! But other types of SNe have different ejecta parameters:

- Different values of t_0
- Non zero values of $t'E(t')|_0 = ET$.
- Mixing?

Objectives

- Acquire a sample of bolometric light curves of different types of SNe, with an emphasis on core-collapse SNe. Photometry must include IR measurements.
- Study the γ -ray deposition history the sample. Expand the Katz integral for CC SNe.
- Constrain models using γ -ray transfer simulations.

SE SNe require a more versatile interpolation function and accounting for *ET*

SE SNe have $t_0 \sim 100 \text{ day} - f_{dep} = t_0^2/t^2$ not valid in most measurements.

Interpolating function cannot be parametrized by one equation - another parameter n is introduced and:

$$f_{\rm dep} = \frac{1}{(1 + (t/t_0)^n)^{\frac{2}{n}}}$$

ET is non negligible for SE SNe – can reach ~few× 10^{54} erg s, ~10% of the time weighted luminosity.

Deducing 4 ejecta properties from the bolometric light curve

We use the integral method to find 4 parameters: $\{t_0, M_{Ni56}, n, ET\}$

The uncertainty of the parameters is calculated with a MCMC algorithm.

Results: $t_0 - M_{Ni56}$ distribution of our sample

The distribution of $t_0 - M_{Ni56}$ shows:

- The Type Ia t_0 range of 30-45 day is recovered
- Type lb/c have $t_0 \approx 105 140$ day
- Type IIb have $t_0 \approx 80 110$ day
- Type IIP have $t_0 \gtrsim 400$ day

- Average M_{Ni56} of each type satisfies: $\langle M_{\text{Ni56}}^{\text{Ia}} \rangle > \langle M_{\text{Ni56}}^{\text{SE}} \rangle > \langle M_{\text{Ni56}}^{\text{IIP}} \rangle$
- Possible negative correlation between t_0 and M_{Ni56} for Type IIP.

Results: ET distributions

The *ET* distribution show:

- Type IIb have small ET values
- Type lb/c have non negligible ET
- Possible correlation between t_0 and ET

Errors are ~10% order, so we treat these values as tentative

Constraining ejecta parameters with γ -ray transfer simulations

Monte Carlo γ -ray transfer simulations have known physics and are easy to implement.

We can estimate the deposition parameters $\{t_0, n\}$ for models from the literature.

- t_0 constrains the ratio $t_0 \propto \sqrt{\int \rho dv}$ $\propto M_{\rm ej}/\sqrt{E_{\rm kin}}$.
- *n* parameter indicates the amount of mixing.

Conclusions

Unique properties for each SN type. SNe can be distinguished according to its t_0 value.

The γ -ray deposition histories, combined with radiation transfer codes, provide a powerful tool to constrain models.

A bigger sample of CC SNe would:

- Fill the t_0 gap between SE and Type IIP SNe.
- Clarify the range of *ET* values of SE SNe constraints on the progenitor system.
- Correlation between $M_{\rm Ni56}$ and t_0 of Type IIP implication on the explosion mechanism.