VBFH $H \rightarrow XX \rightarrow 4b$

Short lifetimes

Long-lived internal Meeting 06. July 2020

Melanie Eich, Lisa Benato, Gregor Kasieczka, Karla Peña, Jörg Schindler melanie.eich@desy.de

EXZELLENZCLUSTERQUANTUM UNIVERSE

GEFÖRDERT VOM

News

- ► Run over 2016 data → submitted RunH (no HIP effect etc.)
- ► First check for background estimation
- Problems with simple dnn

Simple DNN

Result with previous run:

Trained with: m=[15,20] GeV

Jets signal matched: 620k

Background: 300M

Batch size: 500

Result with current run:

m=15 GeV

350k

235M

1024

First check background estimation - ABCD method

Talk for LLP meeting Friday

VBFH $H \rightarrow XX \rightarrow 4b$

Short lifetimes

Long-lived Exotica WG Meeting

10. July 2020

Melanie Eich, Lisa Benato, Gregor Kasieczka, Karla Peña, Jörg Schindler melanie.eich@desy.de

EXZELLENZCLUSTERQUANTUM UNIVERSE

GEFÖRDERT VOM

Theoretical Overview

- Hierarchy problem of the SM solved by dark sector of Twin Higgs models
- Dark neutral scalars π_{ν} are long-lived, travel finite distance in CMS, decay to SM particles (dominantly $b\bar{b}$)
- Depending on $c\tau$ and $m_{\pi\nu}$ different experimental signatures

ст	Signature	
< 1 mm	b-quark like (Melanie)	
1 mm - 1 m	displaced vertices (Karla)	
1 m - 2 m	trackless jets (Lisa et al.)	
up to 5m	muon chambers (Jörg et al.)	

Monte-Carlo Samples and Reconstruction

Signal - <u>central production</u>:

- $m_{\pi v} = 15$, 40 and 55 GeV, $c\tau = 0$ mm 5 mm
- Slightly more displaced b-quark as in SM process
- Vector-Boson Fusion (VBF) Higgs production

Background samples:

- ▶ QCD, tt̄, SM Higgs
- 2016 MiniAODv3 Moriond17 campaign

Pre-Selection:

- Trigger: jets and b-tags (see backup)
- At least two AK4 CHS jets $p_T > 20$ GeV, $|\eta| < 2.4$
- ▶ Identify VBF jets ($m_{ii} > 400 \text{ GeV}$, $|\Delta \eta| > 3.0$)
- ► H_T > 100 GeV

Difficulties

- Signal shows only slightly difference to background
- Only usage of standard b-tagger to calculate the invariant mass of tagged jets: too much background left
- ⇒Not possible to perform a cut based analysis

Fully connected Network - per jet tagger

- ► ~175k matched signal jets and ~200M inclusive background jets
- ▶ Input variables of leading four jets in p_T:
 - Kinematics: 'Jet_pt', 'Jet_eta', 'Jet_phi', 'Jet_mass', 'Jet_energy',
 - b-tagger:
 'Jet_deepJet_probb', 'Jet_deepJet_probbb', 'Jet_deepJet_problepb',
 'Jet_deepJet_probuds', 'Jet_deepJet_probg', 'Jet_deepJet_probc',
 - Additional variables 'Jet_nSV', 'Jet_nVertexTracks', 'Jet_flightDist2d', 'Jet_flightDist2dError', 'Jet_flightDist3d', 'Jet_flightDist3dError', 'Jet_SV_mass', 'Jet_nTracksSV', 'Jet_nConstituents', 'Jet_nTrackConstituents'

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 128)	2944
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 128)	16512
dropout_1 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 64)	8256
dense_3 (Dense)	(None, 2)	130
Total params: 27,842 Trainable params: 27,842 Non-trainable params: 0		

Background Efficiency check

- Calculate invariant mass for leading two jets passing FCN discriminator > 0.9
- Too few background events left
- Perform data driven background estimation for full analysis

Background Efficiency check

- Calculate invariant mass for leading two jets passing FCN discriminator > 0.9
- Too few background events left
- Perform data driven background estimation for full analysis
- For now:
 - Instead of cut background at discriminator value, use an efficiency factor
 - Calculated for each background in leading and sub-leading jet individually
 - ► Error of p_T binned efficiency is used to estimate an uncertainty on the efficiency
- ► Instead of few background events with high weights, smooth background distribution → Combine can deal with

Sensitivity

Calculate invariant mass for leading two jets passing FCN discriminator > 0.9

Limit shows that this could be the right direction for the full analysis →

Conclusion and Next Steps

- Short lifetime behaves only slightly different than background does
- Not enough to perform a cut based analysis
- Simple FCN shows good performance
- Limits with efficiency study looks promising

- Do proper background estimation
- ► Have a first look at data and check data/MC agreement in control region

Backup

Trigger

```
Generator b-quarks in acceptance: p_T > 15 GeV, |\eta| < 2.4
```

```
'HLT_DoubleJet90_Double30_TripleBTagCSV_p087_v' ||
'HLT_QuadJet45_TripleBTagCSV_p087_v' ||
'HLT_DoubleJetsC112_DoubleBTagCSV_p014_DoublePFJetsC112MaxDeta1p6_v' ||
'HLT_DoubleJetsC112_DoubleBTagCSV_p026_DoublePFJetsC172_v'
```


Previous Analyses

Performance of different tagger

Efficiency

- ► Too low statistics in background! Workaround for this study:
- ► Calculate background efficiency for j0 (j1) which passes dnn output cut for different p_T bins

Calculations:

- ▶ n1:# jets pass dnn cut per p_T bin and add error as sqrt of value
- ▶ n2:# jets total per p_T bin and add error as sqrt of value
- ▶ Efficiency: $eff_{jX,pT} = \frac{n1}{n2} = \frac{\varepsilon}{1-\varepsilon}$
- Asymmetric errors: $\Delta \tau_{low/up} = \frac{1}{(1-\varepsilon)^2} \Delta \varepsilon_{low/up}$

Combine all efficiencies to one overall p_T binned efficiency; do error propagation to combine the assymetric errors

- Cut signal at dnn output cut
- Calculate invariant mass of leading 2 jets (signal passes dnn output cut)
- Scale background with

$$Eff = eff_{j0} * eff_{j1}$$

Efficiency Uncertainty

Scale background with

$$Eff = eff_{j0} * eff_{j1}$$

- ightharpoonup Take integral of scaled histogram as central value ($I_{central}$)
- Scale histogram up and down with using the efficiency for each jet:

$$Eff_{up} = \left(eff_{j0} + error_{up_{eff,j0}}\right) * \left(eff_{j1} + error_{up_{eff,j1}}\right)$$

$$Eff_{down} = \left(eff_{j0} - error_{down_{eff,j0}}\right) * \left(eff_{j1} - error_{down_{eff,j1}}\right)$$
and get integrals (I_{up}, I_{down})

Calculate uncertainty as:

$$Uncertainty = \frac{I_{up} + I_{down}}{2 * I_{central}}$$