Hands-on Introduction to Qiskit

Stefan Kühn

Workshop on Quantum Computing and Quantum Sensors DESY, 18 August 2020

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology is available
- Noise significantly limits the circuit depths that can be executed reliably

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology is available
- Noise significantly limits the circuit depths that can be executed reliably
- Current NISQ devices have already outperformed classical devices

Article

Quantum supremacy using a programmable superconducting processor

972pagaos arg/100008j147385-010-19 Received: 22 July 2019 Accepted: 20 September 2019 Published online: 23 October 2019 we have been determined by the billing of the stars of security the based's based of the based o

J. Preskill, Quantum 2, 79 (2018) Image taken from https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html Arute et al., Nature 574, 505 (2019)

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology is available
- Noise significantly limits the circuit depths that can be executed reliably
- Current NISQ devices have already outperformed classical devices
- Commercially/openly available devices
 - D-Wave
 - IBM Quantum Experience
 - Rigetti Computing
 - ► IONQ

► ..

rticle

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1028/s44586-018-16 Received: 22 July 2018 Accepted: 20 September 2019 Published online: 23 October 2019 we have been determined by the billing of the stars of security the based's based of the based o

J. Preskill, Quantum 2, 79 (2018) Image taken from https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html Arute et al., Nature 574, 505 (2019)

3 The Qiskit SDK

Quantum bits

- Qubit: two-dimensional quantum system
- Hilbert space ${\cal H}$ with basis $\{ |0
 angle \,, |1
 angle \}$
- Contrary to classical bits, it can be in a superposition

$$|\psi
angle = \cos\left(rac{ heta}{2}
ight)|0
angle + e^{i\phi}\sin\left(rac{ heta}{2}
ight)|1
angle$$

Quantum bits

- Qubit: two-dimensional quantum system
- Hilbert space ${\cal H}$ with basis $\{\ket{0},\ket{1}\}$
- Contrary to classical bits, it can be in a superposition

$$|\psi
angle = \cos\left(rac{ heta}{2}
ight)|0
angle + e^{i\phi}\sin\left(rac{ heta}{2}
ight)|1
angle$$

Quantum bits

- n qubits: Hilbert space is the tensor product $\mathcal{H}\otimes\cdots\otimes\mathcal{H}$
- Most general state in the computational basis

$$\ket{\psi} = \sum_{i_1,...,i_n=0}^1 c_{i_1...i_n} \ket{i_1} \otimes \cdots \otimes \ket{i_N}$$

n times

- A quantum state that cannot be factored as a tensor product of states of its local constituents is called **entangled**
 - $\blacktriangleright \quad |\psi_1\rangle = \frac{1}{2} (|0\rangle \otimes |0\rangle + |0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$

Quantum bits

- n qubits: Hilbert space is the tensor product $\mathcal{H}\otimes\cdots\otimes\mathcal{H}$
- Most general state in the computational basis

$$\ket{\psi} = \sum_{i_1,\ldots,i_n=0}^1 c_{i_1\ldots i_n} \ket{i_1} \otimes \cdots \otimes \ket{i_N}$$

n times

- A quantum state that cannot be factored as a tensor product of states of its local constituents is called entangled
 - $|\psi_1\rangle = \frac{1}{2}(|0\rangle \otimes |0\rangle + |0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$ $= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ $\Rightarrow \text{ product state}$

$$\blacktriangleright |\psi_2\rangle = \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$

Quantum bits

- n qubits: Hilbert space is the tensor product $\mathcal{H}\otimes\cdots\otimes\mathcal{H}$
- Most general state in the computational basis

$$\ket{\psi} = \sum_{i_1,\ldots,i_n=0}^1 c_{i_1\ldots i_n} \ket{i_1} \otimes \cdots \otimes \ket{i_N}$$

n times

- A quantum state that cannot be factored as a tensor product of states of its local constituents is called entangled
 - $|\psi_1\rangle = \frac{1}{2}(|0\rangle \otimes |0\rangle + |0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$ = $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

 \Rightarrow product state

$$|\psi_2\rangle = \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle) \Rightarrow \text{ entangled state (Bell state)}$$

• In the following \otimes often suppressed: $\ket{0} \otimes \ket{0} o \ket{0} \ket{0}, \ \ket{00}$

Quantum gates

• Quantum mechanics is reversible, $|\psi\rangle$ undergoes unitary evolution under some (time-dependent) Hamiltonian H(t)

$$|\psi(t)
angle = au \exp\left(-i\int_{0}^{t}ds\, extsf{H}(s)
ight)|\psi_{0}
angle$$

Quantum gates are represented by unitary matrices

Quantum gates

• Quantum mechanics is reversible, $|\psi\rangle$ undergoes unitary evolution under some (time-dependent) Hamiltonian H(t)

$$|\psi(t)
angle = au \exp\left(-i\int_{0}^{t}ds\, extsf{H}(s)
ight)|\psi_{0}
angle$$

- Quantum gates are represented by unitary matrices
- Typically gates only act on a few qubits in a nontrivial way

Common single-qubit quantum gates

$$\begin{array}{c|ccc} X & -X & X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & \begin{vmatrix} 0 \rangle \rightarrow |1 \rangle \\ |1 \rangle \rightarrow |0 \rangle \\ \hline Y & -Y & Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} & \begin{vmatrix} 0 \rangle \rightarrow -i |1 \rangle \\ |1 \rangle \rightarrow i |0 \rangle \\ \hline Z & -Z & Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & \begin{vmatrix} 0 \rangle \rightarrow |0 \rangle \\ |1 \rangle \rightarrow -|1 \rangle \end{array}$$

Common multi-qubit quantum gates |00 angle ightarrow |00 angle $ig| \mathsf{CNOT} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix} ig| egin{pmatrix} |00 angle oremsimes |00 angle oremsimes |00 angle \ |01 angle oremsimes |01 angle \ |10 angle \ |10 angle oremsimes |01 angle \ |10 angle \ |11 angle \ |10 angle \ |$ CNOT |11 angle ightarrow |10 angle $R_{xx}(\theta)$ $R_{xx}(\theta)$ $R_{xx}(\theta) = \exp\left(-i\frac{\theta}{2}X \otimes X\right)$ $-R_{vv}(\theta)$ $R_{vv}(\theta) = \exp\left(-i\frac{\theta}{2}Y \otimes Y\right)$ $R_{vv}(\theta)$ – $-R_{zz}(\theta)$ $-R_{zz}(\theta) = \exp\left(-\frac{i\frac{\theta}{2}Z \otimes Z}{i\frac{\theta}{2}Z \otimes Z}\right)$ $R_{zz}(\theta)$

Quantum gates

 Since quantum mechanics is linear, we can apply gates to superpositions of basis states

$$\begin{aligned} \mathsf{CNOT} & \left(\alpha \left| \mathsf{00} \right\rangle + \beta \left| \mathsf{01} \right\rangle + \gamma \left| \mathsf{10} \right\rangle + \delta \left| \mathsf{11} \right\rangle \right) \\ = & \alpha \left| \mathsf{00} \right\rangle + \beta \left| \mathsf{01} \right\rangle + \gamma \left| \mathsf{11} \right\rangle + \delta \left| \mathsf{10} \right\rangle \end{aligned}$$

Quantum gates

 Since quantum mechanics is linear, we can apply gates to superpositions of basis states

$$\begin{aligned} \mathsf{CNOT} & (\alpha \ket{00} + \beta \ket{01} + \gamma \ket{10} + \delta \ket{11}) \\ = & \alpha \ket{00} + \beta \ket{01} + \gamma \ket{11} + \delta \ket{10} \end{aligned}$$

Combining multiple gates we can build quantum circuits

Basics of the circuit model of quantum computing

3 The Qiskit SDK

4 Hands-on Exercises

- Open source Python SDK for developing and testing quantum programs
- Based on the circuit model of quantum computation

The Qiskit SDK

- Open source Python SDK for developing and testing quantum programs
- Based on the circuit model of quantum computation
- Allows for seamlessly running quantum programs on IBM's quantum devices

https://qiskit.org https://github.com/Qiskit

The Qiskit Elements

Terra 🎈

- Quantum circuits
- Pulse schedule
- Transpiler
- Providers allowing to access backends
- Basic quantum information tasks
- Visualization

The Qiskit Elements

Aqua 💦 Aer 💨 lgnis 🍐 Various classical Dealing with Algorithms for simulators for noise and errors Chemistry guantum circuits Finance Characterizing 🕨 Qasm Machine errors Learning State vector Error mitigation Optimization Unitary Terra 🤍

- Quantum circuits
- Pulse schedule
- Transpiler
- Providers allowing to access backends
- Basic quantum information tasks
- Visualization

The Qiskit Elements

Visualization

Example

```
2 from giskit import QuantumCircuit, execute, Aer, IBMQ
3 from giskit.visualization import *
4 from qiskit.quantum_info import state_fidelity
7 \text{ qc} = \text{QuantumCircuit}(3)
9 qc.cnot(0,1)
10 qc.rz(np.pi/8, 2)
12 qc.measure_all()
15 qasm_simulator = Aer.get_backend(''qasm_simulator'')
16 job = execute(qc, qasm_simulator, shots=500)
17 result = job.result()
  counts = result.get_counts()
  print("Counts for the basis states:",counts)
```

Basics of the circuit model of quantum computing

3 The Qiskit SDK

I Hands-on Exercises

The Bell state

• Simple circuit preparing an entangled state (Bell state)

The Bell state

Simple circuit preparing an entangled state (Bell state)

$$\hspace{0.4cm} \bullet \hspace{0.2cm} |0\rangle \otimes |0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \otimes |0\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \right)$$

The Bell state

Simple circuit preparing an entangled state (Bell state)

$$\begin{array}{c} \bullet \quad |0\rangle \otimes |0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \otimes |0\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \right) \\ \bullet \quad \frac{1}{\sqrt{2}} \left(|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle \right) \xrightarrow{\mathsf{CNOT}} \frac{1}{\sqrt{2}} \left(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle \right) \end{array}$$

The Bell state

• Simple circuit preparing an entangled state (Bell state)

$$\begin{array}{l} |0\rangle \otimes |0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes |0\rangle = \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle) \\ \hline \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle) \xrightarrow{\text{CNOT}} \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle) \\ \hline \text{Measurement in computational basis yields:} \\ P(|0\rangle \otimes |0\rangle) = 1/2, \ P(|1\rangle \otimes |1\rangle) = 1/2 \end{array}$$

Study the Hadamard gate

Tasks

- Implement the circuit above.
- Visualize the circuit and make sure it is correct.
- Measure the results with 100, 500, 1000 and 10000 shots and visualize the result. What do you observe?

Study the Hadamard gate

Tasks

- Implement the circuit above.
- Visualize the circuit and make sure it is correct.
- Measure the results with 100, 500, 1000 and 10000 shots and visualize the result. What do you observe?
- Create a new circuit generating the Bell state

Tasks

Repeat the same tasks for this circuit.

The Bell states

• The following circuit yields $|\Phi^+
angle=rac{1}{\sqrt{2}}\left(|0
angle\otimes|0
angle+|1
angle\otimes|1
angle
ight)$

Optional tasks

Can you find circuits preparing the other three Bell states?

$$ig|\Phi^{-}ig
angle = rac{1}{\sqrt{2}} \left(|0
angle \otimes |0
angle - |1
angle \otimes |1
angle
ight) \ ig|\Psi^{+}ig
angle = rac{1}{\sqrt{2}} \left(|0
angle \otimes |1
angle + |1
angle \otimes |0
angle
ight) \ ig|\Psi^{-}ig
angle = rac{1}{\sqrt{2}} \left(|0
angle \otimes |1
angle - |1
angle \otimes |0
angle
ight)$$

Convince yourself that the Bell states are orthonormal.

Exercise 2: Phase kickback

Simple phase kickback

Consider the following simple circuit

Tasks:

- Implement the circuit and visualize it to make sure it is correct.
- Obtain the final state using the state vector simulator and visualize the state of the individual qubits on the Bloch sphere. Which state did you obtain?
- Add an additional CNOT gate to the circuit.
- Execute it again the state vector simulator and the state of the individual qubits on the Bloch sphere. What do you observe?

Simple phase kickback

Our final circuit looks like

Optional tasks:

- Replace the CNOT gate in the circuit above with a controlled R_x rotation.
- Simulate the circuit for various angles of the rotation gate and visualize the results on the Bloch sphere. What do you observe? Can you explain the effect?

Remarks

- These two circuits are special cases of phase kickback
- Phase kickback is a fundamental building block of many quantum algorithms
- General form

• Choosing \ket{u} as an eigenstate of U with eigenvalue $\exp(i\phi)$

$$\hspace{0.4cm} | 0 \rangle \otimes | u \rangle \xrightarrow{H} \tfrac{1}{\sqrt{2}} \left(| 0 \rangle + | 1 \rangle \right) \otimes | u \rangle \\$$

 $\begin{array}{c|c} & \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \otimes |u\rangle \xrightarrow{\mathsf{cU}} \frac{1}{\sqrt{2}} \left(\overline{|0\rangle} \otimes |u\rangle + e^{i\phi} |1\rangle \otimes |u\rangle \right) \\ \Rightarrow & \mathsf{Phase} \text{ has been kicked back into the control qubit} \\ & & \frac{1}{\sqrt{2}} \left(|0\rangle \otimes |u\rangle + e^{i\phi} |1\rangle \otimes |u\rangle \right) \xrightarrow{H} \left(\cos \frac{\phi}{2} |0\rangle + i \sin \frac{\phi}{2} |1\rangle \right) \otimes |u\rangle \end{array}$

Remarks

- These two circuits are special cases of phase kickback
- Phase kickback is a fundamental building block of many quantum algorithms
- General form

• Choosing \ket{u} as an eigenstate of U with eigenvalue $\exp(i\phi)$

$$|0
angle\otimes|u
angle riangleq rac{1}{\sqrt{2}}\left(|0
angle+|1
angle
ight)\otimes|u
angle$$

 $\stackrel{1}{\longrightarrow} \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \otimes |u\rangle \xrightarrow{cU} \frac{1}{\sqrt{2}} \left(|0\rangle \otimes |u\rangle + e^{i\phi} |1\rangle \otimes |u\rangle \right)$ $\Rightarrow Phase has been kicked back into the control qubit$

 $\bigcirc \ \frac{1}{\sqrt{2}} \left(|0\rangle \otimes |u\rangle + e^{i\phi} |1\rangle \otimes |u\rangle \right) \xrightarrow{H} \left(\cos \frac{\phi}{2} |0\rangle + i \sin \frac{\phi}{2} |1\rangle \right) \otimes |u\rangle$

• Unitaries $ar{U}$ computing $f:\{0,1\}^n o \{0,1\}^m$

$$ar{U}\ket{x}\ket{y}=\ket{x}\ket{y\oplus f(x)}$$

can be shown to be of the controlled-U type.

The Ising model

Ising Hamiltonian with open boundary conditions

$$H = \sum_{i=0}^{N-2} Z_i Z_{i+1} + h \sum_{i=0}^{N-1} X_i$$

ullet Evolution of the wave function $|\psi_0
angle$ under the Hamiltonian

$$\ket{\psi(t)} = \exp\left(-iHt
ight) \ket{\psi_0}$$

The Ising model

Ising Hamiltonian with open boundary conditions

$$H = \sum_{i=0}^{N-2} Z_i Z_{i+1} + h \sum_{i=0}^{N-1} X_i$$

- Evolution of the wave function $|\psi_{0}
angle$ under the Hamiltonian

$$|\psi(t)\rangle = \exp\left(-iHt\right)|\psi_{0}\rangle = \left[\exp\left(-iH\frac{t}{n}\right)\right]^{n}|\psi_{0}\rangle$$

The Ising model

Ising Hamiltonian with open boundary conditions

$$H = \sum_{i=0}^{N-2} Z_i Z_{i+1} + h \sum_{i=0}^{N-1} X_i$$

- Evolution of the wave function $|\psi_0
angle$ under the Hamiltonian

$$|\psi(t)\rangle = \exp\left(-iHt\right)|\psi_{0}\rangle = \left[\exp\left(-iH\frac{t}{n}\right)\right]^{n}|\psi_{0}\rangle$$

• Using a Suszuki-Trotter decomposition with $\Delta t = t/n$ we can approximate

$$\exp\left(-iH\Delta t
ight) pprox \prod_{k} \exp\left(-iZ_{k}Z_{k+1}\Delta t
ight) \prod_{k} \exp\left(-ihX_{k}\Delta t
ight) + \mathcal{O}\left((\Delta t)^{2}\right)$$

The Ising model

• Trotterized time evolution operator for a small step Δt

$$U \approx \prod_{k} \exp\left(-iZ_{k}Z_{k+1}\Delta t\right) \prod_{k} \exp\left(-ihX_{k}\Delta t\right)$$

Tasks

- Somplete the function preparing the initial state |0010
 angle.
- Complete the function that implements the Trotter evolution of the Ising model.
- Run the quantum circuit and compute the time evolution.
- Visualize the expectation value of the total magnetization $M = \langle \sum_i Z_i \rangle$ and site resolved expectation $\langle Z_i \rangle$ as a function of time and compare to the exact solution.

The Ising model

• Trotterized time evolution operator for a small step Δt

$$U \approx \prod_{k} \exp\left(-iZ_{k}Z_{k+1}\Delta t\right) \prod_{k} \exp\left(-ihX_{k}\Delta t\right)$$

Optional tasks

Create a parameterized version of your previous circuit with parameters \Delta t and h. Instructions for creating parameterized circuits can be found here: https://qiskit.org/documentation/tutorials/ circuits_advanced/1_advanced_circuits.html# Parameterized-circuits

Motivation

Basics of the circuit model of quantum computing

3 The Qiskit SDK

Hands-on Exercises

Further reading & Outlook

Further reading

- Tutorials provided by Qiskit can be found here https://github.com/Qiskit/qiskit-tutorials
- Qiskit textbook
 https://qiskit.org/textbook/preface.html

Next steps

- Register for an IBM ID to access cloud services https://quantum-computing.ibm.com/
 - Access IBM's small scale quantum devices
 - Powerful Qasm simulator for up 32 qubits
 - Interactive circuit composer
- Qiskit documentation

https://qiskit.org/documentation/index.html

Setting

ullet We assume the quantum device prepares a pure state $|\psi
angle$

• $|\psi
angle$ is measured in the computational basis $\{|0
angle\,,|1
angle\}^{\otimes N}$

$$\ket{\psi} = \sum_{i=0}^{2^N-1} c_i \ket{\mathsf{binary}(i)}$$

 \Rightarrow with probability $|c_i|^2$ we record the bit string $|{
m binary}(i)
angle$

Setting

ullet We assume the quantum device prepares a pure state $|\psi
angle$

 $|ullet|\psi
angle$ is measured in the computational basis $\{|0
angle\,,|1
angle\}^{\otimes N}$

$$\ket{\psi} = \sum_{i=0}^{2^N-1} c_i \ket{ ext{binary}(i)}$$

⇒ with probability |c_i|² we record the bit string |binary(i)⟩
In practice we have to repeat the experiment many times to get enough samples from the probability distribution
⇒ "Number of shots" s

Measuring observables

- ullet Given an observable O we want to compute $ig \langle \psi | \ O \, | \psi
 angle$
- State can only be measured in the computational basis

$$\begin{split} \langle \psi | \ O | \psi \rangle &= \langle \psi | \ U^{\dagger} U O U^{\dagger} U | \psi \rangle \\ &= \langle \psi' | \ U O U^{\dagger} | \psi' \rangle \\ &= \langle \psi' | \ D | \psi' \rangle \end{aligned}$$

Measuring observables

- ullet Given an observable O we want to compute $raket{\psi}O\ket{\psi}$
- State can only be measured in the computational basis

$$\begin{array}{l} \left\langle \psi \right| \mathcal{O} \left| \psi \right\rangle = \left\langle \psi \right| \mathcal{U}^{\dagger} \mathcal{U} \mathcal{O} \mathcal{U}^{\dagger} \mathcal{U} \left| \psi \right\rangle \\ = \left\langle \psi' \right| \mathcal{U} \mathcal{O} \mathcal{U}^{\dagger} \left| \psi' \right\rangle \\ = \left\langle \psi' \right| \mathcal{D} \left| \psi' \right\rangle \end{array}$$

• Choose U such that $D = UOU^{\dagger} = {\sf diag}(\lambda_0,\ldots,\lambda_{2^N-1})$ in the computational basis

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} & egin{aligned} &$$

- U is often called **post rotation**
- Instead of $|\psi
 angle$ we prepare $|\psi'
 angle$ and measure the probability distribution $|c_i'|^2$

Example

- State $\ket{\psi} = {\it R_y}(\pi/4) \ket{0}$
- Observable we want to measure O = X

$$D = UOU^{\dagger} = rac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} X rac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = HXH = Z$$

• Circuit to prepare and measure $\ket{\psi'} = U \ket{\psi} = \textit{HR}_y(\pi/4) \ket{0}$

$$|0\rangle - R_y(\pi/4) - H$$

Example

- State $\ket{\psi} = {\it R_y}(\pi/4) \ket{0}$
- Observable we want to measure O = X

$$D = UOU^{\dagger} = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix} X rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix} = HXH = Z$$

• Circuit to prepare and measure $\ket{\psi'} = U \ket{\psi} = {\it HR}_y(\pi/4) \ket{0}$

$$0\rangle - R_y(\pi/4) - H - \checkmark$$

• Results for Z preparing $|\psi'
angle$

Example

- State $\ket{\psi} = {\it R_y}(\pi/4) \ket{0}$
- Observable we want to measure O = X

$$D = UOU^{\dagger} = rac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} X rac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = HXH = Z$$

• Circuit to prepare and measure $\ket{\psi'} = U \ket{\psi} = {\it HR}_y(\pi/4) \ket{0}$

$$0\rangle - R_y(\pi/4) - H - \checkmark$$

• Results for Z preparing $|\psi'
angle$

Example

- State $\ket{\psi} = {\it R_y}(\pi/4) \ket{0}$
- Observable we want to measure O = X

$$D = UOU^{\dagger} = rac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} X rac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = HXH = Z$$

• Circuit to prepare and measure $\ket{\psi'} = U \ket{\psi} = {\it HR}_y(\pi/4) \ket{0}$

$$0\rangle - R_y(\pi/4) - H - \checkmark$$

• Results for Z preparing $|\psi'
angle$

Example

• Repeating the measurement a number of times for fixed s yields a histogram with peak around $E_0 = \langle \psi | X | \psi \rangle$

Example

- Repeating the measurement a number of times for fixed s yields a histogram with peak around $E_0 = \langle \psi | X | \psi \rangle$
- The mean and standard deviation of the error

$$\left|\left\langle\psi\right|D\left|\psi
ight
angle_{\mathsf{measured}}-\left\langle\psi\right|D\left|\psi
ight
angle_{\mathsf{exact}}$$

decay as a power law in s

Appendix B. Universal quantum gates

Universal gate set

A set of gates is **universal** if, by composing gates from it, one can express **any unitary transformation** on any number of qubits.

- Since the *n*-qubit unitaries form an uncountable infinite set $U(2^n)$, this requires an infinite number of gates
- Example: {CNOT, $R_x(\theta), R_y(\theta), R_z(\theta)$ }, $\theta \in [0, 2\pi]$

Approximate universal gate set

A set of gates is **universal** if, by composing gates from it, one can **approximate any unitary transformation** on any number of qubits to **any desired precision**.

- Examples: {CNOT, $R_y(\pi/4), R_z(\pi/2)$ }, {Toffoli, $H, R_z(\pi/2)$ }
- Approximation can be done efficiently (Solovay–Kitaev theorem, $\mathcal{O}(\mathrm{polylog}(1/\varepsilon)))$