Hands-on Introduction to Qiskit

TRE CYPRUS

Workshop on Quantum Computing and Quantum SEnsors
DESY, 18 AUGUST 2020

Motivation

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology is available
- Noise significantly limits the circuit depths that can be executed reliably

Motivation

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology is available
- Noise significantly limits the circuit depths that can be executed reliably
- Current NISQ devices have already outperformed classical devices

J. Preskill, Quantum 2, 79 (2018) Image taken from https: //ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html Arute et al., Nature 574, 505 (2019)

Motivation

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology is available
- Noise significantly limits the circuit depths that can be executed reliably
- Current NISQ devices have already outperformed classical devices
- Commercially/openly available devices
- D-Wave
- IBM Quantum Experience
- Rigetti Computing
$>$ IONQ

Article
Quantum supremacy usinga programmable superconductingprocessor

J. Preskill, Quantum 2, 79 (2018) Image taken from https: //ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html Arute et al., Nature 574, 505 (2019)

Outline

(4) Motivation
(2) Basics of the circuit model of quantum computing
3. The Qiskit SDK
© Hands-on Exercises
(5) Further reading \& Outlook

Basics of the circuit model of quantum computing

Quantum bits

- Qubit: two-dimensional quantum system
- Hilbert space \mathcal{H} with basis $\{|0\rangle,|1\rangle\}$
- Contrary to classical bits, it can be in a superposition

$$
|\psi\rangle=\cos \left(\frac{\theta}{2}\right)|0\rangle+e^{i \phi} \sin \left(\frac{\theta}{2}\right)|1\rangle
$$

Basics of the circuit model of quantum computing

Quantum bits

- Qubit: two-dimensional quantum system
- Hilbert space \mathcal{H} with basis $\{|0\rangle,|1\rangle\}$
- Contrary to classical bits, it can be in a superposition

$$
|\psi\rangle=\cos \left(\frac{\theta}{2}\right)|0\rangle+e^{i \phi} \sin \left(\frac{\theta}{2}\right)|1\rangle
$$

$$
\vec{r}=\left(\begin{array}{c}
\sin (\theta) \cos (\phi) \\
\sin (\theta) \sin (\phi) \\
\cos (\theta)
\end{array}\right)
$$

Basics of the circuit model of quantum computing

Quantum bits

- n qubits: Hilbert space is the tensor product $\underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{n \text { times }}$
- Most general state in the computational basis

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{n}=0}^{1} c_{i_{1} \ldots i_{n}}\left|i_{1}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
$$

- A quantum state that cannot be factored as a tensor product of states of its local constituents is called entangled

$$
\vee\left|\psi_{1}\right\rangle=\frac{1}{2}(|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

Basics of the circuit model of quantum computing

Quantum bits

- n qubits: Hilbert space is the tensor product $\underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{n \text { times }}$
- Most general state in the computational basis

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{n}=0}^{1} c_{i_{1} \ldots i_{n}}\left|i_{1}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
$$

- A quantum state that cannot be factored as a tensor product of states of its local constituents is called entangled

$$
\begin{aligned}
\nabla\left|\psi_{1}\right\rangle & =\frac{1}{2}(|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
\end{aligned}
$$

\Rightarrow product state

$$
\nabla\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

Basics of the circuit model of quantum computing

Quantum bits

- n qubits: Hilbert space is the tensor product $\underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{n \text { times }}$
- Most general state in the computational basis

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{n}=0}^{1} c_{i_{1} \ldots i_{n}}\left|i_{1}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
$$

- A quantum state that cannot be factored as a tensor product of states of its local constituents is called entangled

$$
\begin{aligned}
\nabla\left|\psi_{1}\right\rangle & =\frac{1}{2}(|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
\end{aligned}
$$

\Rightarrow product state
$\vee\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$
\Rightarrow entangled state (Bell state)

- In the following \otimes often suppressed: $|0\rangle \otimes|0\rangle \rightarrow|0\rangle|0\rangle,|00\rangle$

Basics of the circuit model of quantum computing

Quantum gates

- Quantum mechanics is reversible, $|\psi\rangle$ undergoes unitary evolution under some (time-dependent) Hamiltonian $H(t)$

$$
|\psi(t)\rangle=T \exp \left(-i \int_{0}^{t} d s H(s)\right)\left|\psi_{0}\right\rangle
$$

- Quantum gates are represented by unitary matrices

Basics of the circuit model of quantum computing

Quantum gates

- Quantum mechanics is reversible, $|\psi\rangle$ undergoes unitary evolution under some (time-dependent) Hamiltonian $H(t)$

$$
|\psi(t)\rangle=T \exp \left(-i \int_{0}^{t} d s H(s)\right)\left|\psi_{0}\right\rangle
$$

- Quantum gates are represented by unitary matrices
- Typically gates only act on a few qubits in a nontrivial way

Basics of the circuit model of quantum computing

Common single-qubit quantum gates

$$
\begin{array}{cc|c|c}
X-X & X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) & \begin{array}{c}
|0\rangle \rightarrow|1\rangle \\
|1\rangle \rightarrow|0\rangle
\end{array} \\
\hline Y-Y & Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) & \begin{array}{l}
|0\rangle \rightarrow-i|1\rangle \\
|1\rangle \rightarrow i|0\rangle
\end{array} \\
\hline Z-Z-Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) & \begin{array}{l}
|0\rangle \rightarrow i|0\rangle \\
|1\rangle \rightarrow-|1\rangle
\end{array}
\end{array}
$$

Basics of the circuit model of quantum computing

Common single-qubit quantum gates

$R_{x}(\theta)$	$R_{x}=\exp \left(-i \frac{\theta}{2} X\right)$
$R_{y}(\theta)$	
$R_{z}(\theta)$	$R_{y}=\exp \left(-i \frac{\theta}{2} Y\right)$
$R_{z}(\theta)$	$R_{z}(\theta)=\exp \left(-i \frac{\theta}{2} Z\right)$

Basics of the circuit model of quantum computing

Common single-qubit quantum gates

$R_{x}(\theta)$	$R_{x}=\exp \left(-i \frac{\theta}{2} X\right)$	
$R_{y}(\theta)$	$R_{y}=\exp \left(-i \frac{\theta}{2} Y\right)$	
$R_{z}(\theta)$	$R_{z}(\theta)$	$R_{z}(\theta)=\exp \left(-i \frac{\theta}{2} Z\right)$
Hadamard $-H$	$H=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$	$\|1\rangle \rightarrow \frac{1}{\sqrt{2}}(\|0\rangle-\|1\rangle)$

Basics of the circuit model of quantum computing

Common multi-qubit quantum gates
CNOT \quad CNOT \(=\left(\begin{array}{llll}1 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 1

0 \& 0 \& 1 \& 0\end{array}\right) |\)| $\|00\rangle \rightarrow\|00\rangle$ |
| :--- |
| $\|01\rangle \rightarrow\|01\rangle$ |
| $\|10\rangle \rightarrow\|11\rangle$ |
| $\|11\rangle \rightarrow\|10\rangle$ |

Basics of the circuit model of quantum computing

Common multi-qubit quantum gates

| CNOT | CNOT $=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ | $\|00\rangle \rightarrow\|00\rangle$
 $\|01\rangle$$\rightarrow\|01\rangle$ |
| :--- | :--- | :--- | :--- | :--- |
| $\|10\rangle \rightarrow\|11\rangle$ | | |
| $\|11\rangle \rightarrow\|10\rangle$ | | |$|$

Basics of the circuit model of quantum computing

Quantum gates

- Since quantum mechanics is linear, we can apply gates to superpositions of basis states

$$
\begin{gathered}
\operatorname{CNOT}(\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle) \\
=\alpha|00\rangle+\beta|01\rangle+\gamma|11\rangle+\delta|10\rangle
\end{gathered}
$$

Basics of the circuit model of quantum computing

Quantum gates

- Since quantum mechanics is linear, we can apply gates to superpositions of basis states

$$
\begin{gathered}
\operatorname{CNOT}(\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle) \\
=\alpha|00\rangle+\beta|01\rangle+\gamma|11\rangle+\delta|10\rangle
\end{gathered}
$$

- Combining multiple gates we can build quantum circuits

3.

- Motivation
(2) Basics of the circuit model of quantum computing

3 The Qiskit SDK

The Qiskit SDK

The Qiskit SDK

- Open source Python SDK for developing and testing quantum programs
- Based on the circuit model of quantum computation

The Qiskit SDK

The Qiskit SDK

- Open source Python SDK for developing and testing quantum programs
- Based on the circuit model of quantum computation
- Allows for seamlessly running quantum programs on IBM's quantum devices

The Qiskit SDK

The Qiskit Elements

Terra

- Quantum circuits
- Pulse schedule
- Transpiler
- Providers allowing to access backends
- Basic quantum information tasks
- Visualization

The Qiskit SDK

The Qiskit Elements

Ignis

- Dealing with noise and errors
- Characterizing errors
- Error mitigation

Aqua

- Algorithms for
- Chemistry
- Finance
- Machine

Learning

- Optimization

Aer

- Various classical simulators for quantum circuits
- Qasm
- State vector
- Unitary

Terra

- Quantum circuits
- Pulse schedule
- Transpiler
- Providers allowing to access backends
- Basic quantum information tasks
- Visualization

The Qiskit SDK

The Qiskit Elements

Ignis

- Dealing with noise and errors
- Characterizing errors
- Error mitigation

Aqua

- Algorithms for
- Chemistry
- Finance
- Machine Learning
- Optimization

Aer

- Various classical simulators for quantum circuits
- Qasm
- State vector
- Unitary

Terra

- Quantum circuits
- Pulse schedule
- Transpiler
- Providers allowing to access backends
- Basic quantum information tasks
- Visualization

The Qiskit SDK

Example

1 \# Importing standard Qiskit libraries
2 from qiskit import QuantumCircuit, execute, Aer, IBMQ
3 from qiskit.visualization import *
4 from qiskit.quantum_info import state_fidelity 5
6 \# Create a quantum circuit for 3 qubits
7 qc = QuantumCircuit (3)
8
$9 \mathrm{qc} \cdot \operatorname{cnot}(0,1)$
10 qc.rz(np.pi/8, 2)
11
12 qc.measure_all()
13
14

```
qasm_simulator = Aer.get_backend("qasm_simulator")
job = execute(qc, qasm_simulator, shots=500)
result = job.result()
counts = result.get_counts()
print("Counts for the basis states:",counts)
```


4

Motivation
(2) Basics of the circuit model of quantum computing
8. The Qiskit SDK

4 Hands-on Exercises

Exercise 1: Superposition and Entanglement

Exercise 1: Superposition and Entanglement

The Bell state

- Simple circuit preparing an entangled state (Bell state)

Exercise 1: Superposition and Entanglement

The Bell state

- Simple circuit preparing an entangled state (Bell state)

- $|0\rangle \otimes|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle)$

Exercise 1: Superposition and Entanglement

The Bell state

- Simple circuit preparing an entangled state (Bell state)

- $|0\rangle \otimes|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle)$
- $\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

Exercise 1: Superposition and Entanglement

The Bell state

- Simple circuit preparing an entangled state (Bell state)

- $|0\rangle \otimes|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle)$
- $\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$
- Measurement in computational basis yields:

$$
P(|0\rangle \otimes|0\rangle)=1 / 2, P(|1\rangle \otimes|1\rangle)=1 / 2
$$

Exercise 1: Superposition and Entanglement

- Study the Hadamard gate

$$
|0\rangle-H-X=
$$

Tasks

- Implement the circuit above.
- Visualize the circuit and make sure it is correct.
- Measure the results with $100,500,1000$ and 10000 shots and visualize the result. What do you observe?

Exercise 1: Superposition and Entanglement

- Study the Hadamard gate

$$
|0\rangle-H-X=
$$

Tasks

- Implement the circuit above.
- Visualize the circuit and make sure it is correct.
- Measure the results with $100,500,1000$ and 10000 shots and visualize the result. What do you observe?
- Create a new circuit generating the Bell state

Tasks
Repeat the same tasks for this circuit.

Exercise 1: Superposition and Entanglement

The Bell states

- The following circuit yields $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

Optional tasks

- Can you find circuits preparing the other three Bell states?

$$
\begin{aligned}
& \left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle-|1\rangle \otimes|1\rangle) \\
& \left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle) \\
& \left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle-|1\rangle \otimes|0\rangle)
\end{aligned}
$$

- Convince yourself that the Bell states are orthonormal.

Exercise 2: Phase kickback

Exercise 2: Phase kickback

Simple phase kickback

- Consider the following simple circuit

Tasks:

- Implement the circuit and visualize it to make sure it is correct.
- Obtain the final state using the state vector simulator and visualize the state of the individual qubits on the Bloch sphere. Which state did you obtain?
- Add an additional CNOT gate to the circuit.
- Execute it again the state vector simulator and the state of the individual qubits on the Bloch sphere. What do you observe?

Exercise 2: Phase kickback

Simple phase kickback

- Our final circuit looks like

Optional tasks:

- Replace the CNOT gate in the circuit above with a controlled R_{x} rotation.
- Simulate the circuit for various angles of the rotation gate and visualize the results on the Bloch sphere. What do you observe? Can you explain the effect?

Exercise 2: Phase kickback

Remarks

- These two circuits are special cases of phase kickback
- Phase kickback is a fundamental building block of many quantum algorithms
- General form

- Choosing $|u\rangle$ as an eigenstate of U with eigenvalue $\exp (i \phi)$
e $|0\rangle \otimes|u\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|u\rangle$
- $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|u\rangle \xrightarrow{\mathrm{cU}} \frac{1}{\sqrt{2}}\left(|0\rangle \otimes|u\rangle+e^{i \phi}|1\rangle \otimes|u\rangle\right)$
\Rightarrow Phase has been kicked back into the control qubit
- $\frac{1}{\sqrt{2}}\left(|0\rangle \otimes|u\rangle+e^{i \phi}|1\rangle \otimes|u\rangle\right) \xrightarrow{H}\left(\cos \frac{\phi}{2}|0\rangle+i \sin \frac{\phi}{2}|1\rangle\right) \otimes|u\rangle$

Exercise 2: Phase kickback

Remarks

- These two circuits are special cases of phase kickback
- Phase kickback is a fundamental building block of many quantum algorithms
- General form

- Choosing $|u\rangle$ as an eigenstate of U with eigenvalue $\exp (i \phi)$
- $|0\rangle \otimes|u\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|u\rangle$
- $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|u\rangle \xrightarrow{\mathrm{cU}} \frac{1}{\sqrt{2}}\left(|0\rangle \otimes|u\rangle+e^{i \phi}|1\rangle \otimes|u\rangle\right)$
\Rightarrow Phase has been kicked back into the control qubit
- $\frac{1}{\sqrt{2}}\left(|0\rangle \otimes|u\rangle+e^{i \phi}|1\rangle \otimes|u\rangle\right) \xrightarrow{H}\left(\cos \frac{\phi}{2}|0\rangle+i \sin \frac{\phi}{2}|1\rangle\right) \otimes|u\rangle$
- Unitaries \bar{U} computing $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$

$$
\bar{U}|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle
$$

can be shown to be of the controlled- U type.

Exercise 3: Real-time evolution of the Ising model

Exercise 3: Real-time evolution of the Ising model

The Ising model

- Ising Hamiltonian with open boundary conditions

$$
H=\sum_{i=0}^{N-2} Z_{i} Z_{i+1}+h \sum_{i=0}^{N-1} X_{i}
$$

- Evolution of the wave function $\left|\psi_{0}\right\rangle$ under the Hamiltonian

$$
|\psi(t)\rangle=\exp (-i H t)\left|\psi_{0}\right\rangle
$$

Exercise 3: Real-time evolution of the Ising model

The Ising model

- Ising Hamiltonian with open boundary conditions

$$
H=\sum_{i=0}^{N-2} Z_{i} Z_{i+1}+h \sum_{i=0}^{N-1} X_{i}
$$

- Evolution of the wave function $\left|\psi_{0}\right\rangle$ under the Hamiltonian

$$
|\psi(t)\rangle=\exp (-i H t)\left|\psi_{0}\right\rangle=\left[\exp \left(-i H \frac{t}{n}\right)\right]^{n}\left|\psi_{0}\right\rangle
$$

Exercise 3: Real-time evolution of the Ising model

The Ising model

- Ising Hamiltonian with open boundary conditions

$$
H=\sum_{i=0}^{N-2} Z_{i} Z_{i+1}+h \sum_{i=0}^{N-1} X_{i}
$$

- Evolution of the wave function $\left|\psi_{0}\right\rangle$ under the Hamiltonian

$$
|\psi(t)\rangle=\exp (-i H t)\left|\psi_{0}\right\rangle=\left[\exp \left(-i H \frac{t}{n}\right)\right]^{n}\left|\psi_{0}\right\rangle
$$

- Using a Suszuki-Trotter decomposition with $\Delta t=t / n$ we can approximate

$$
\exp (-i H \Delta t) \approx \prod_{k} \exp \left(-i Z_{k} Z_{k+1} \Delta t\right) \prod_{k} \exp \left(-i h X_{k} \Delta t\right)+\mathcal{O}\left((\Delta t)^{2}\right)
$$

Exercise 3: Real-time evolution of the Ising model

The Ising model

- Trotterized time evolution operator for a small step Δt

$$
U \approx \prod_{k} \exp \left(-i Z_{k} Z_{k+1} \Delta t\right) \prod_{k} \exp \left(-i h X_{k} \Delta t\right)
$$

Tasks

- Complete the function preparing the initial state $|0010\rangle$.
- Complete the function that implements the Trotter evolution of the Ising model.
- Run the quantum circuit and compute the time evolution.
- Visualize the expectation value of the total magnetization $M=\left\langle\sum_{i} Z_{i}\right\rangle$ and site resolved expectation $\left\langle Z_{i}\right\rangle$ as a function of time and compare to the exact solution.

Exercise 3: Real-time evolution of the Ising model

The Ising model

- Trotterized time evolution operator for a small step Δt

$$
U \approx \prod \exp \left(-i Z_{k} Z_{k+1} \Delta t\right) \prod \exp \left(-i h X_{k} \Delta t\right)
$$

Optional tasks

- Create a parameterized version of your previous circuit with parameters Δt and h. Instructions for creating parameterized circuits can be found here:
https://qiskit.org/documentation/tutorials/ circuits_advanced/1_advanced_circuits.html\#
Parameterized-circuits

5.

Motivation
(2) Basics of the circuit model of quantum computing

- The Qiskit SDK
© Hands-on Exercises
(5) Further reading \& Outlook

Further reading \& Outlook

Further reading

- Tutorials provided by Qiskit can be found here https://github.com/Qiskit/qiskit-tutorials
- Qiskit textbook
https://qiskit.org/textbook/preface.html

Next steps

- Register for an IBM ID to access cloud services https://quantum- computing.ibm.com/
- Access IBM's small scale quantum devices
- Powerful Qasm simulator for up 32 qubits
- Interactive circuit composer
- Qiskit documentation
https://qiskit.org/documentation/index.html

Appendix A. Projective measurements

Setting

- We assume the quantum device prepares a pure state $|\psi\rangle$

- $|\psi\rangle$ is measured in the computational basis $\{|0\rangle,|1\rangle\}^{\otimes N}$

$$
|\psi\rangle=\sum_{i=0}^{2^{N}-1} c_{i}|\operatorname{binary}(i)\rangle
$$

\Rightarrow with probability $\left|c_{i}\right|^{2}$ we record the bit string $|\operatorname{binary}(i)\rangle$

Appendix A. Projective measurements

Setting

- We assume the quantum device prepares a pure state $|\psi\rangle$

- $|\psi\rangle$ is measured in the computational basis $\{|0\rangle,|1\rangle\}^{\otimes N}$

$$
|\psi\rangle=\sum_{i=0}^{2^{N}-1} c_{i}|\operatorname{binary}(i)\rangle
$$

\Rightarrow with probability $\left|c_{i}\right|^{2}$ we record the bit string $|\operatorname{binary}(i)\rangle$

- In practice we have to repeat the experiment many times to get enough samples from the probability distribution \Rightarrow "Number of shots" s

Appendix A. Projective measurements

Measuring observables

- Given an observable O we want to compute $\langle\psi| O|\psi\rangle$
- State can only be measured in the computational basis

$$
\begin{aligned}
\langle\psi| O|\psi\rangle & =\langle\psi| U^{\dagger} U O U^{\dagger} U|\psi\rangle \\
& =\left\langle\psi^{\prime}\right| U O U^{\dagger}\left|\psi^{\prime}\right\rangle \\
& =\left\langle\psi^{\prime}\right| D\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

Appendix A. Projective measurements

Measuring observables

- Given an observable O we want to compute $\langle\psi| O|\psi\rangle$
- State can only be measured in the computational basis

$$
\begin{aligned}
\langle\psi| O|\psi\rangle & =\langle\psi| U^{\dagger} U O U^{\dagger} U|\psi\rangle \\
& =\left\langle\psi^{\prime}\right| U O U^{\dagger}\left|\psi^{\prime}\right\rangle \\
& =\left\langle\psi^{\prime}\right| D\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

- Choose U such that $D=U O U^{\dagger}=\operatorname{diag}\left(\lambda_{0}, \ldots, \lambda_{2^{N}-1}\right)$ in the computational basis

$$
\langle\psi| O|\psi\rangle=\sum_{i=0}^{2^{N}-1}\left|c_{i}^{\prime}\right|^{2} \lambda_{i}
$$

- U is often called post rotation
- Instead of $|\psi\rangle$ we prepare $\left|\psi^{\prime}\right\rangle$ and measure the probability distribution $\left|c_{i}^{\prime}\right|^{2}$

Appendix A. Projective measurements

Example

- State $|\psi\rangle=R_{y}(\pi / 4)|0\rangle$
- Observable we want to measure $O=X$

$$
D=U O U^{\dagger}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \times \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=H X H=Z
$$

- Circuit to prepare and measure $\left|\psi^{\prime}\right\rangle=U|\psi\rangle=H R_{y}(\pi / 4)|0\rangle$

Appendix A. Projective measurements

Example

- State $|\psi\rangle=R_{y}(\pi / 4)|0\rangle$
- Observable we want to measure $O=X$

$$
D=U O U^{\dagger}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \times \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=H X H=Z
$$

- Circuit to prepare and measure $\left|\psi^{\prime}\right\rangle=U|\psi\rangle=H R_{y}(\pi / 4)|0\rangle$

$$
|0\rangle-R_{y}(\pi / 4)-H-\infty
$$

- Results for Z preparing $\left|\psi^{\prime}\right\rangle$

Appendix A. Projective measurements

Example

- State $|\psi\rangle=R_{y}(\pi / 4)|0\rangle$
- Observable we want to measure $O=X$

$$
D=U O U^{\dagger}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \times \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=H X H=Z
$$

- Circuit to prepare and measure $\left|\psi^{\prime}\right\rangle=U|\psi\rangle=H R_{y}(\pi / 4)|0\rangle$

$$
|0\rangle-R_{y}(\pi / 4)-H-\infty
$$

- Results for Z preparing $\left|\psi^{\prime}\right\rangle$

Appendix A. Projective measurements

Example

- State $|\psi\rangle=R_{y}(\pi / 4)|0\rangle$
- Observable we want to measure $O=X$

$$
D=U O U^{\dagger}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \times \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=H X H=Z
$$

- Circuit to prepare and measure $\left|\psi^{\prime}\right\rangle=U|\psi\rangle=H R_{y}(\pi / 4)|0\rangle$

$$
|0\rangle-R_{y}(\pi / 4)-H-\infty
$$

- Results for Z preparing $\left|\psi^{\prime}\right\rangle$

Appendix A. Projective measurements

Example

- Repeating the measurement a number of times for fixed s yields a histogram with peak around $E_{0}=\langle\psi| X|\psi\rangle$

Appendix A. Projective measurements

Example

- Repeating the measurement a number of times for fixed s yields a histogram with peak around $E_{0}=\langle\psi| X|\psi\rangle$
- The mean and standard deviation of the error

$$
|\langle\psi| D| \psi\rangle_{\text {measured }}-\langle\psi| D|\psi\rangle_{\text {exact }} \mid
$$

decay as a power law in s

Appendix B. Universal quantum gates

Universal gate set
A set of gates is universal if, by composing gates from it, one can express any unitary transformation on any number of qubits.

- Since the n-qubit unitaries form an uncountable infinite set $U\left(2^{n}\right)$, this requires an infinite number of gates
- Example: $\left\{\mathrm{CNOT}, R_{x}(\theta), R_{y}(\theta), R_{z}(\theta)\right\}, \theta \in[0,2 \pi]$

Approximate universal gate set
A set of gates is universal if, by composing gates from it, one can approximate any unitary transformation on any number of qubits to any desired precision.

- Examples: $\left\{\right.$ CNOT, $\left.R_{y}(\pi / 4), R_{z}(\pi / 2)\right\}$, $\left\{\right.$ Toffoli, $\left.H, R_{z}(\pi / 2)\right\}$
- Approximation can be done efficiently (Solovay-Kitaev theorem, $\mathcal{O}($ polylog $(1 / \varepsilon)))$

