
Hands-on Introduction to Qiskit

Stefan Kühn

Workshop on Quantum Computing and Quantum

Sensors

DESY, 18 August 2020

dummy

Motivation

On the verge of the NISQ era

Noisy Intermediate-Scale Quantum
(NISQ) technology is available

Noise signi�cantly limits the circuit
depths that can be executed reliably

Current NISQ devices have already
outperformed classical devices

Commercially/openly available
devices
I D-Wave
I IBM Quantum Experience
I Rigetti Computing
I IONQ
I ...

J. Preskill, Quantum 2, 79 (2018)

Image taken from https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

Arute et al., Nature 574, 505 (2019)

dummy

Motivation

On the verge of the NISQ era

Noisy Intermediate-Scale Quantum
(NISQ) technology is available

Noise signi�cantly limits the circuit
depths that can be executed reliably

Current NISQ devices have already
outperformed classical devices

Commercially/openly available
devices
I D-Wave
I IBM Quantum Experience
I Rigetti Computing
I IONQ
I ...

J. Preskill, Quantum 2, 79 (2018)
Image taken from https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

Arute et al., Nature 574, 505 (2019)

dummy

Motivation

On the verge of the NISQ era

Noisy Intermediate-Scale Quantum
(NISQ) technology is available

Noise signi�cantly limits the circuit
depths that can be executed reliably

Current NISQ devices have already
outperformed classical devices

Commercially/openly available
devices
I D-Wave
I IBM Quantum Experience
I Rigetti Computing
I IONQ
I ...

J. Preskill, Quantum 2, 79 (2018)
Image taken from https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

Arute et al., Nature 574, 505 (2019)

dummy

Outline

1 Motivation

2 Basics of the circuit model of quantum computing

3 The Qiskit SDK

4 Hands-on Exercises

5 Further reading & Outlook

dummy

Basics of the circuit model of quantum computing

Quantum bits

Qubit: two-dimensional quantum system

Hilbert space H with basis {|0〉 , |1〉}
Contrary to classical bits, it can be in a superposition

|ψ〉 = cos

(
θ

2

)
|0〉+ e iφ sin

(
θ

2

)
|1〉

|1〉

|0〉

θ

φ

|0〉+ |1〉

|0〉+ i |1〉
~r =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

dummy

Basics of the circuit model of quantum computing

Quantum bits

Qubit: two-dimensional quantum system

Hilbert space H with basis {|0〉 , |1〉}
Contrary to classical bits, it can be in a superposition

|ψ〉 = cos

(
θ

2

)
|0〉+ e iφ sin

(
θ

2

)
|1〉

|1〉

|0〉

θ

φ

|0〉+ |1〉

|0〉+ i |1〉
~r =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

dummy

Basics of the circuit model of quantum computing

Quantum bits

n qubits: Hilbert space is the tensor product H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

Most general state in the computational basis

|ψ〉 =
1∑

i1,...,in=0

ci1...in |i1〉 ⊗ · · · ⊗ |iN〉

A quantum state that cannot be factored as a tensor product
of states of its local constituents is called entangled

I |ψ1〉 = 1

2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

= 1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)
⇒ product state

I |ψ2〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
⇒ entangled state (Bell state)

In the following ⊗ often suppressed: |0〉 ⊗ |0〉 → |0〉 |0〉 , |00〉

dummy

Basics of the circuit model of quantum computing

Quantum bits

n qubits: Hilbert space is the tensor product H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

Most general state in the computational basis

|ψ〉 =
1∑

i1,...,in=0

ci1...in |i1〉 ⊗ · · · ⊗ |iN〉

A quantum state that cannot be factored as a tensor product
of states of its local constituents is called entangled

I |ψ1〉 = 1

2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

= 1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)
⇒ product state

I |ψ2〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

⇒ entangled state (Bell state)

In the following ⊗ often suppressed: |0〉 ⊗ |0〉 → |0〉 |0〉 , |00〉

dummy

Basics of the circuit model of quantum computing

Quantum bits

n qubits: Hilbert space is the tensor product H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

Most general state in the computational basis

|ψ〉 =
1∑

i1,...,in=0

ci1...in |i1〉 ⊗ · · · ⊗ |iN〉

A quantum state that cannot be factored as a tensor product
of states of its local constituents is called entangled

I |ψ1〉 = 1

2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

= 1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)
⇒ product state

I |ψ2〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
⇒ entangled state (Bell state)

In the following ⊗ often suppressed: |0〉 ⊗ |0〉 → |0〉 |0〉 , |00〉

dummy

Basics of the circuit model of quantum computing

Quantum gates

Quantum mechanics is reversible, |ψ〉 undergoes unitary
evolution under some (time-dependent) Hamiltonian H(t)

|ψ(t)〉 = T exp

(
−i
∫ t

0

ds H(s)

)
|ψ0〉

Quantum gates are represented by unitary matrices

Typically gates only act on a few qubits in a nontrivial way

U

dummy

Basics of the circuit model of quantum computing

Quantum gates

Quantum mechanics is reversible, |ψ〉 undergoes unitary
evolution under some (time-dependent) Hamiltonian H(t)

|ψ(t)〉 = T exp

(
−i
∫ t

0

ds H(s)

)
|ψ0〉

Quantum gates are represented by unitary matrices

Typically gates only act on a few qubits in a nontrivial way

U

dummy

Basics of the circuit model of quantum computing

Common single-qubit quantum gates

X X X =

(
0 1
1 0

) |0〉 → |1〉
|1〉 → |0〉

Y Y Y =

(
0 −i
i 0

) |0〉 → −i |1〉
|1〉 → i |0〉

Z Z Z =

(
1 0
0 −1

) |0〉 → |0〉
|1〉 → − |1〉

dummy

Basics of the circuit model of quantum computing

Common single-qubit quantum gates

Rx(θ) Rx(θ) Rx = exp
(
−i θ

2
X
)

Ry (θ) Ry (θ) Ry = exp
(
−i θ

2
Y
)

Rz(θ) Rz(θ) Rz(θ) = exp
(
−i θ

2
Z
)

Hadamard H H =

(
1√
2

1√
2

1√
2
− 1√

2

) |0〉 → 1√
2

(|0〉+ |1〉)

|1〉 → 1√
2

(|0〉 − |1〉)

dummy

Basics of the circuit model of quantum computing

Common single-qubit quantum gates

Rx(θ) Rx(θ) Rx = exp
(
−i θ

2
X
)

Ry (θ) Ry (θ) Ry = exp
(
−i θ

2
Y
)

Rz(θ) Rz(θ) Rz(θ) = exp
(
−i θ

2
Z
)

Hadamard H H =

(
1√
2

1√
2

1√
2
− 1√

2

) |0〉 → 1√
2

(|0〉+ |1〉)

|1〉 → 1√
2

(|0〉 − |1〉)

dummy

Basics of the circuit model of quantum computing

Common multi-qubit quantum gates

CNOT
•

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

Rxx(θ) Rxx(θ) Rxx(θ) = exp
(
−i θ

2
X ⊗ X

)

Ryy (θ) Ryy (θ) Ryy (θ) = exp
(
−i θ

2
Y ⊗ Y

)

Rzz(θ) Rzz(θ) Rzz(θ) = exp
(
−i θ

2
Z ⊗ Z

)

dummy

Basics of the circuit model of quantum computing

Common multi-qubit quantum gates

CNOT
•

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

Rxx(θ) Rxx(θ) Rxx(θ) = exp
(
−i θ

2
X ⊗ X

)

Ryy (θ) Ryy (θ) Ryy (θ) = exp
(
−i θ

2
Y ⊗ Y

)

Rzz(θ) Rzz(θ) Rzz(θ) = exp
(
−i θ

2
Z ⊗ Z

)

dummy

Basics of the circuit model of quantum computing

Quantum gates

Since quantum mechanics is linear, we can apply gates to
superpositions of basis states

CNOT
(
α |00〉+ β |01〉+ γ |10〉+ δ |11〉

)
=α |00〉+ β |01〉+ γ |11〉+ δ |10〉

Combining multiple gates we can build quantum circuits

|0〉 Rx(θ0) X •

|0〉 Rz(θ1)

|0〉

dummy

Basics of the circuit model of quantum computing

Quantum gates

Since quantum mechanics is linear, we can apply gates to
superpositions of basis states

CNOT
(
α |00〉+ β |01〉+ γ |10〉+ δ |11〉

)
=α |00〉+ β |01〉+ γ |11〉+ δ |10〉

Combining multiple gates we can build quantum circuits

|0〉 Rx(θ0) X •

|0〉 Rz(θ1)

|0〉

dummy

3.

1 Motivation

2 Basics of the circuit model of quantum computing

3 The Qiskit SDK

4 Hands-on Exercises

5 Further reading & Outlook

dummy

The Qiskit SDK

The Qiskit SDK

Open source Python SDK for developing and testing quantum
programs

Based on the circuit model of quantum computation

Allows for seamlessly running quantum programs on IBM's
quantum devices

https://qiskit.org

https://github.com/Qiskit

https://qiskit.org
https://github.com/Qiskit

dummy

The Qiskit SDK

The Qiskit SDK

Open source Python SDK for developing and testing quantum
programs

Based on the circuit model of quantum computation

Allows for seamlessly running quantum programs on IBM's
quantum devices

https://qiskit.org

https://github.com/Qiskit

https://qiskit.org
https://github.com/Qiskit

dummy

The Qiskit SDK

The Qiskit Elements

Ignis

Dealing with
noise and errors

Characterizing
errors

Error mitigation

Aqua

Algorithms for
I Chemistry
I Finance
I Machine

Learning
I Optimization

Aer

Various classical
simulators for
quantum circuits
I Qasm
I State vector
I Unitary

Terra

Quantum circuits

Pulse schedule

Transpiler

Providers allowing to access backends

Basic quantum information tasks

Visualization

dummy

The Qiskit SDK

The Qiskit Elements

Ignis

Dealing with
noise and errors

Characterizing
errors

Error mitigation

Aqua

Algorithms for
I Chemistry
I Finance
I Machine

Learning
I Optimization

Aer

Various classical
simulators for
quantum circuits
I Qasm
I State vector
I Unitary

Terra

Quantum circuits

Pulse schedule

Transpiler

Providers allowing to access backends

Basic quantum information tasks

Visualization

dummy

The Qiskit SDK

The Qiskit Elements

Ignis

Dealing with
noise and errors

Characterizing
errors

Error mitigation

Aqua

Algorithms for
I Chemistry
I Finance
I Machine

Learning
I Optimization

Aer

Various classical
simulators for
quantum circuits
I Qasm
I State vector
I Unitary

Terra

Quantum circuits

Pulse schedule

Transpiler

Providers allowing to access backends

Basic quantum information tasks

Visualization

dummy

The Qiskit SDK

Example

1 # Importing standard Qiskit libraries

2 from qiskit import QuantumCircuit , execute , Aer , IBMQ

3 from qiskit.visualization import *

4 from qiskit.quantum_info import state_fidelity

5

6 # Create a quantum circuit for 3 qubits

7 qc = QuantumCircuit (3)

8 # Add gates

9 qc.cnot (0,1)

10 qc.rz(np.pi/8, 2)

11 # Add a measurement to all qubits

12 qc.measure_all ()

13

14 # Simulate the experiment

15 qasm_simulator = Aer.get_backend("qasm_simulator")

16 job = execute(qc , qasm_simulator , shots =500)

17 result = job.result ()

18 counts = result.get_counts ()

19 print("Counts for the basis states:",counts)

dummy

4.

1 Motivation

2 Basics of the circuit model of quantum computing

3 The Qiskit SDK

4 Hands-on Exercises

5 Further reading & Outlook

Exercise 1: Superposition and Entanglement

dummy

Exercise 1: Superposition and Entanglement

The Bell state

Simple circuit preparing an entangled state (Bell state)

|0〉 H •

|0〉

1 |0〉 ⊗ |0〉 H−→ 1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉)

2
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉) CNOT−−−−→ 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
3 Measurement in computational basis yields:

P(|0〉 ⊗ |0〉) = 1/2, P(|1〉 ⊗ |1〉) = 1/2

dummy

Exercise 1: Superposition and Entanglement

The Bell state

Simple circuit preparing an entangled state (Bell state)

|0〉 H •

|0〉

1 |0〉 ⊗ |0〉 H−→ 1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉)

2
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉) CNOT−−−−→ 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
3 Measurement in computational basis yields:

P(|0〉 ⊗ |0〉) = 1/2, P(|1〉 ⊗ |1〉) = 1/2

dummy

Exercise 1: Superposition and Entanglement

The Bell state

Simple circuit preparing an entangled state (Bell state)

|0〉 H •

|0〉

1 |0〉 ⊗ |0〉 H−→ 1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉)

2
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉) CNOT−−−−→ 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

3 Measurement in computational basis yields:
P(|0〉 ⊗ |0〉) = 1/2, P(|1〉 ⊗ |1〉) = 1/2

dummy

Exercise 1: Superposition and Entanglement

The Bell state

Simple circuit preparing an entangled state (Bell state)

|0〉 H •

|0〉

1 |0〉 ⊗ |0〉 H−→ 1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉)

2
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉) CNOT−−−−→ 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
3 Measurement in computational basis yields:

P(|0〉 ⊗ |0〉) = 1/2, P(|1〉 ⊗ |1〉) = 1/2

dummy

Exercise 1: Superposition and Entanglement

Study the Hadamard gate

|0〉 H

Tasks

1 Implement the circuit above.

2 Visualize the circuit and make sure it is correct.

3 Measure the results with 100, 500, 1000 and 10000 shots and
visualize the result. What do you observe?

Create a new circuit generating the Bell state

|0〉 H •

|0〉

Tasks

Repeat the same tasks for this circuit.

dummy

Exercise 1: Superposition and Entanglement

Study the Hadamard gate

|0〉 H

Tasks

1 Implement the circuit above.

2 Visualize the circuit and make sure it is correct.

3 Measure the results with 100, 500, 1000 and 10000 shots and
visualize the result. What do you observe?

Create a new circuit generating the Bell state

|0〉 H •

|0〉

Tasks

Repeat the same tasks for this circuit.

dummy

Exercise 1: Superposition and Entanglement

The Bell states

The following circuit yields |Φ+〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

|0〉 H •

|0〉

Optional tasks

1 Can you �nd circuits preparing the other three Bell states?∣∣Φ−〉 =
1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉)∣∣Ψ+
〉

=
1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)∣∣Ψ−〉 =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

2 Convince yourself that the Bell states are orthonormal.

Exercise 2: Phase kickback

dummy

Exercise 2: Phase kickback

Simple phase kickback

Consider the following simple circuit

|0〉 H

|0〉 X H

Tasks:

1 Implement the circuit and visualize it to make sure it is correct.

2 Obtain the �nal state using the state vector simulator and
visualize the state of the individual qubits on the Bloch sphere.
Which state did you obtain?

3 Add an additional CNOT gate to the circuit.

4 Execute it again the state vector simulator and the state of the
individual qubits on the Bloch sphere. What do you observe?

dummy

Exercise 2: Phase kickback

Simple phase kickback

Our �nal circuit looks like

|0〉 H •

|0〉 X H

Optional tasks:

1 Replace the CNOT gate in the circuit above with a controlled
Rx rotation.

2 Simulate the circuit for various angles of the rotation gate and
visualize the results on the Bloch sphere. What do you
observe? Can you explain the e�ect?

dummy

Exercise 2: Phase kickback

Remarks

These two circuits are special cases of phase kickback

Phase kickback is a fundamental building block of many
quantum algorithms
General form

|0〉 H • H

|u〉 U

Choosing |u〉 as an eigenstate of U with eigenvalue exp(iφ)

1 |0〉 ⊗ |u〉 H−→ 1√
2

(|0〉+ |1〉)⊗ |u〉
2 1√

2
(|0〉+ |1〉)⊗ |u〉 cU−→ 1√

2

(
|0〉 ⊗ |u〉+ e iφ |1〉 ⊗ |u〉

)
⇒ Phase has been kicked back into the control qubit

3 1√
2

(
|0〉 ⊗ |u〉+ e iφ |1〉 ⊗ |u〉

) H−→
(

cos φ
2
|0〉+ i sin φ

2
|1〉
)
⊗ |u〉

Unitaries Ū computing f : {0, 1}n → {0, 1}m

Ū |x〉 |y〉 = |x〉 |y ⊕ f (x)〉
can be shown to be of the controlled-U type.

dummy

Exercise 2: Phase kickback

Remarks

These two circuits are special cases of phase kickback

Phase kickback is a fundamental building block of many
quantum algorithms
General form

|0〉 H • H

|u〉 U

Choosing |u〉 as an eigenstate of U with eigenvalue exp(iφ)

1 |0〉 ⊗ |u〉 H−→ 1√
2

(|0〉+ |1〉)⊗ |u〉
2 1√

2
(|0〉+ |1〉)⊗ |u〉 cU−→ 1√

2

(
|0〉 ⊗ |u〉+ e iφ |1〉 ⊗ |u〉

)
⇒ Phase has been kicked back into the control qubit

3 1√
2

(
|0〉 ⊗ |u〉+ e iφ |1〉 ⊗ |u〉

) H−→
(

cos φ
2
|0〉+ i sin φ

2
|1〉
)
⊗ |u〉

Unitaries Ū computing f : {0, 1}n → {0, 1}m

Ū |x〉 |y〉 = |x〉 |y ⊕ f (x)〉
can be shown to be of the controlled-U type.

Exercise 3: Real-time evolution of the Ising model

dummy

Exercise 3: Real-time evolution of the Ising model

The Ising model

Ising Hamiltonian with open boundary conditions

H =
N−2∑
i=0

ZiZi+1 + h
N−1∑
i=0

Xi

Evolution of the wave function |ψ0〉 under the Hamiltonian

|ψ(t)〉 = exp (−iHt) |ψ0〉

=
[
exp

(
−iH t

n

)]n
|ψ0〉

Using a Suszuki-Trotter decomposition with ∆t = t/n we can
approximate

exp (−iH∆t) ≈
∏
k

exp (−iZkZk+1∆t)
∏
k

exp (−ihXk∆t) +O
(

(∆t)2
)

dummy

Exercise 3: Real-time evolution of the Ising model

The Ising model

Ising Hamiltonian with open boundary conditions

H =
N−2∑
i=0

ZiZi+1 + h
N−1∑
i=0

Xi

Evolution of the wave function |ψ0〉 under the Hamiltonian

|ψ(t)〉 = exp (−iHt) |ψ0〉 =
[
exp

(
−iH t

n

)]n
|ψ0〉

Using a Suszuki-Trotter decomposition with ∆t = t/n we can
approximate

exp (−iH∆t) ≈
∏
k

exp (−iZkZk+1∆t)
∏
k

exp (−ihXk∆t) +O
(

(∆t)2
)

dummy

Exercise 3: Real-time evolution of the Ising model

The Ising model

Ising Hamiltonian with open boundary conditions

H =
N−2∑
i=0

ZiZi+1 + h
N−1∑
i=0

Xi

Evolution of the wave function |ψ0〉 under the Hamiltonian

|ψ(t)〉 = exp (−iHt) |ψ0〉 =
[
exp

(
−iH t

n

)]n
|ψ0〉

Using a Suszuki-Trotter decomposition with ∆t = t/n we can
approximate

exp (−iH∆t) ≈
∏
k

exp (−iZkZk+1∆t)
∏
k

exp (−ihXk∆t) +O
(

(∆t)2
)

dummy

Exercise 3: Real-time evolution of the Ising model

The Ising model

Trotterized time evolution operator for a small step ∆t

U ≈
∏
k

exp (−iZkZk+1∆t)
∏
k

exp (−ihXk∆t)

Tasks

1 Complete the function preparing the initial state |0010〉.
2 Complete the function that implements the Trotter evolution

of the Ising model.

3 Run the quantum circuit and compute the time evolution.

4 Visualize the expectation value of the total magnetization
M = 〈

∑
i Zi 〉 and site resolved expectation 〈Zi 〉 as a function

of time and compare to the exact solution.

dummy

Exercise 3: Real-time evolution of the Ising model

The Ising model

Trotterized time evolution operator for a small step ∆t

U ≈
∏
k

exp (−iZkZk+1∆t)
∏
k

exp (−ihXk∆t)

Optional tasks

1 Create a parameterized version of your previous circuit with
parameters ∆t and h. Instructions for creating parameterized
circuits can be found here:
https://qiskit.org/documentation/tutorials/

circuits_advanced/1_advanced_circuits.html#

Parameterized-circuits

https://qiskit.org/documentation/tutorials/circuits_advanced/1_advanced_circuits.html#Parameterized-circuits
https://qiskit.org/documentation/tutorials/circuits_advanced/1_advanced_circuits.html#Parameterized-circuits
https://qiskit.org/documentation/tutorials/circuits_advanced/1_advanced_circuits.html#Parameterized-circuits

dummy

5.

1 Motivation

2 Basics of the circuit model of quantum computing

3 The Qiskit SDK

4 Hands-on Exercises

5 Further reading & Outlook

dummy

Further reading & Outlook

Further reading

Tutorials provided by Qiskit can be found here
https://github.com/Qiskit/qiskit-tutorials

Qiskit textbook
https://qiskit.org/textbook/preface.html

Next steps

Register for an IBM ID to access cloud services
https://quantum-computing.ibm.com/

I Access IBM's small scale quantum devices
I Powerful Qasm simulator for up 32 qubits
I Interactive circuit composer

Qiskit documentation
https://qiskit.org/documentation/index.html

https://github.com/Qiskit/qiskit-tutorials
https://qiskit.org/textbook/preface.html
https://quantum-computing.ibm.com/
https://qiskit.org/documentation/index.html

dummy

Appendix A. Projective measurements

Setting

We assume the quantum device prepares a pure state |ψ〉

|0〉 Rx(θ0) • X •

|0〉 Rz(θ1) •

|0〉

|ψ〉 is measured in the computational basis {|0〉 , |1〉}⊗N

|ψ〉 =
2N−1∑
i=0

ci |binary(i)〉

⇒ with probability |ci |2 we record the bit string |binary(i)〉

In practice we have to repeat the experiment many times to
get enough samples from the probability distribution
⇒ �Number of shots� s

dummy

Appendix A. Projective measurements

Setting

We assume the quantum device prepares a pure state |ψ〉

|0〉 Rx(θ0) • X •

|0〉 Rz(θ1) •

|0〉

|ψ〉 is measured in the computational basis {|0〉 , |1〉}⊗N

|ψ〉 =
2N−1∑
i=0

ci |binary(i)〉

⇒ with probability |ci |2 we record the bit string |binary(i)〉
In practice we have to repeat the experiment many times to
get enough samples from the probability distribution
⇒ �Number of shots� s

dummy

Appendix A. Projective measurements

Measuring observables

Given an observable O we want to compute 〈ψ|O |ψ〉
State can only be measured in the computational basis

〈ψ|O |ψ〉 = 〈ψ|U†UOU†U |ψ〉
=
〈
ψ′
∣∣UOU† ∣∣ψ′〉

=
〈
ψ′
∣∣D ∣∣ψ′〉

Choose U such that D = UOU† = diag(λ0, . . . , λ2N−1) in the
computational basis

〈ψ|O |ψ〉 =
2N−1∑
i=0

|c ′i |2λi

U is often called post rotation

Instead of |ψ〉 we prepare |ψ′〉 and measure the probability
distribution |c ′i |2

dummy

Appendix A. Projective measurements

Measuring observables

Given an observable O we want to compute 〈ψ|O |ψ〉
State can only be measured in the computational basis

〈ψ|O |ψ〉 = 〈ψ|U†UOU†U |ψ〉
=
〈
ψ′
∣∣UOU† ∣∣ψ′〉

=
〈
ψ′
∣∣D ∣∣ψ′〉

Choose U such that D = UOU† = diag(λ0, . . . , λ2N−1) in the
computational basis

〈ψ|O |ψ〉 =
2N−1∑
i=0

|c ′i |2λi

U is often called post rotation

Instead of |ψ〉 we prepare |ψ′〉 and measure the probability
distribution |c ′i |2

dummy

Appendix A. Projective measurements

Example

State |ψ〉 = Ry (π/4) |0〉
Observable we want to measure O = X

D = UOU† =
1√
2

(
1 1
1 −1

)
X

1√
2

(
1 1
1 −1

)
= HXH = Z

Circuit to prepare and measure |ψ′〉 = U |ψ〉 = HRy (π/4) |0〉

|0〉 Ry (π/4) H

Results for Z preparing |ψ′〉

dummy

Appendix A. Projective measurements

Example

State |ψ〉 = Ry (π/4) |0〉
Observable we want to measure O = X

D = UOU† =
1√
2

(
1 1
1 −1

)
X

1√
2

(
1 1
1 −1

)
= HXH = Z

Circuit to prepare and measure |ψ′〉 = U |ψ〉 = HRy (π/4) |0〉

|0〉 Ry (π/4) H

Results for Z preparing |ψ′〉

dummy

Appendix A. Projective measurements

Example

State |ψ〉 = Ry (π/4) |0〉
Observable we want to measure O = X

D = UOU† =
1√
2

(
1 1
1 −1

)
X

1√
2

(
1 1
1 −1

)
= HXH = Z

Circuit to prepare and measure |ψ′〉 = U |ψ〉 = HRy (π/4) |0〉

|0〉 Ry (π/4) H

Results for Z preparing |ψ′〉

dummy

Appendix A. Projective measurements

Example

State |ψ〉 = Ry (π/4) |0〉
Observable we want to measure O = X

D = UOU† =
1√
2

(
1 1
1 −1

)
X

1√
2

(
1 1
1 −1

)
= HXH = Z

Circuit to prepare and measure |ψ′〉 = U |ψ〉 = HRy (π/4) |0〉

|0〉 Ry (π/4) H

Results for Z preparing |ψ′〉

dummy

Appendix A. Projective measurements

Example

Repeating the measurement a number of times for �xed s
yields a histogram with peak around E0 = 〈ψ|X |ψ〉

The mean and standard deviation of the error

|〈ψ|D |ψ〉
measured

− 〈ψ|D |ψ〉
exact
|

decay as a power law in s

1050 repetitions
s = 10000

mean value
standard deviation

∝ s−1/2

dummy

Appendix A. Projective measurements

Example

Repeating the measurement a number of times for �xed s
yields a histogram with peak around E0 = 〈ψ|X |ψ〉
The mean and standard deviation of the error

|〈ψ|D |ψ〉
measured

− 〈ψ|D |ψ〉
exact
|

decay as a power law in s

1050 repetitions
s = 10000

mean value
standard deviation

∝ s−1/2

dummy

Appendix B. Universal quantum gates

Universal gate set

A set of gates is universal if, by composing gates from it, one can
express any unitary transformation on any number of qubits.

Since the n-qubit unitaries form an uncountable in�nite set
U(2n), this requires an in�nite number of gates

Example: {CNOT,Rx(θ),Ry (θ),Rz(θ)}, θ ∈ [0, 2π]

Approximate universal gate set

A set of gates is universal if, by composing gates from it, one can
approximate any unitary transformation on any number of
qubits to any desired precision.

Examples: {CNOT,Ry (π/4),Rz(π/2)}, {To�oli,H,Rz(π/2)}
Approximation can be done e�ciently (Solovay�Kitaev
theorem, O(polylog(1/ε)))

	Motivation
	Basics of the circuit model of quantum computing
	The Qiskit SDK
	Hands-on Exercises
	Further reading & Outlook

