### Machine Learning with Quantum Computers

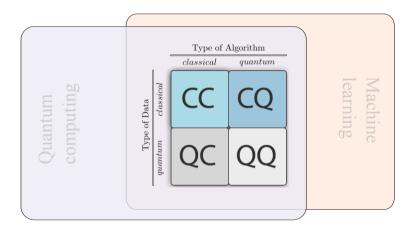
#### Maria Schuld

Xanadu and University of KwaZulu-Natal

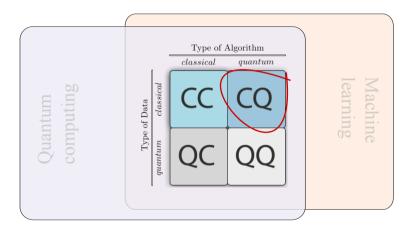
DESY Workshop, August 2020



### The intersection of quantum computing and ML is rich.



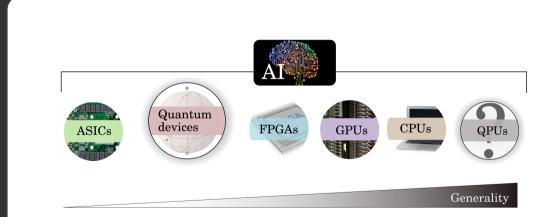
### The intersection of quantum computing and ML is rich.



### Approaches range from traditional to near-term QC.



## Approaches range from traditional to near-term QC.



## Software plays a central role in near-term approaches.

| ≡ 18                                    | IM QL      | antum Experien                                                                                                       | ce                                           | ⊐ D         | emo    | ×    |      |                |       |  |     |   |   |    |  |    |    |      |    |          |         |                 |            | ۹                                      | 1 | 8        |
|-----------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------|--------|------|------|----------------|-------|--|-----|---|---|----|--|----|----|------|----|----------|---------|-----------------|------------|----------------------------------------|---|----------|
| -                                       | File<br>De |                                                                                                                      | nspect                                       | Open        | QASM   | Help |      |                |       |  |     |   |   |    |  |    |    |      |    |          |         | Se              | ved 🕢 🖡    | Run                                    | → |          |
| 0 E 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | )<br>1     | Composer I<br>The circuit com<br>you to visually i<br>circuits. Here a<br>started.<br>Composer gui<br>Instruction gb | poser is a<br>earn how t<br>re some re<br>de | to create o | uantum |      | ates | Rz<br>> H<br>> | 5' () |  | ) X | Y | Z | 10 |  | U3 | Rx | Ry F | 12 | <b>T</b> | Barrier | Operatio<br>10) | ns<br>15 🥂 | Instruction<br>Subroutines<br>nGO + Ad |   | Feedback |

## Software plays a central role in near-term approaches.

| Search                                              |                                                                                                         |                                                                                                                                                                                                                                                               |                                     |                                         |        |  |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|--------|--|--|--|--|--|
| Using PennyLane<br>Introduction<br>Quantum circuits | Penn                                                                                                    | yLane Documen                                                                                                                                                                                                                                                 | tation                              | Contents<br>Features<br>Getting started |        |  |  |  |  |  |
| Interfaces<br>Quantum operations<br>Measurements    |                                                                                                         | PennyLane is a cross-platform Python library for quantum machine learning, automatic<br>differentiation, and optimization of hybrid quantum-classical computations.                                                                                           |                                     |                                         |        |  |  |  |  |  |
| Templates<br>Optimizers<br>Configuration            | Using PennyLane                                                                                         | Developing<br>How you can contribute to the                                                                                                                                                                                                                   | API<br>Explore the PennyLane API >> | Support<br>License                      |        |  |  |  |  |  |
| Development<br>Developers guide                     | features of PennyLane >>                                                                                | development of PennyLane >>                                                                                                                                                                                                                                   |                                     |                                         |        |  |  |  |  |  |
| luilding a plugin<br>tesearch and contribution      | Follow the gradient. Built-in auto                                                                      | matic differentiation                                                                                                                                                                                                                                         |                                     |                                         |        |  |  |  |  |  |
| API<br>mi<br>mi.init                                | of quantum circuits.<br>• Best of both worlds. Support for<br>classical models; connect quant           | of quarkum circuits.<br>• <i>lest of both works</i> , sports for hybrid quarkum and<br>distancial models, connect quarkum hardware with<br>Pyforch. TensorRive, and Num?y.<br>• <i>Batterie solucide</i> frovides optimization and<br>machine learning tools. |                                     |                                         |        |  |  |  |  |  |
| mi.interfaces<br>mi.operation                       | machine learning tools.                                                                                 |                                                                                                                                                                                                                                                               |                                     |                                         |        |  |  |  |  |  |
| ml.plugins<br>ml.templates<br>ml.utils              | model can be run on different ba<br>plugins to access even more der<br>Strawberry Fields, IBM Q, Google | Device independent The same quantum circuit model can be run an different backends, Initial plagers to access even more devices, including Starwitery Friedus, BM Q, Opengic Can B, Right Freet.                                                              |                                     |                                         |        |  |  |  |  |  |
| qml.variable                                        | Microsoft QDK, and ProjectQ.                                                                            |                                                                                                                                                                                                                                                               |                                     |                                         | A vest |  |  |  |  |  |

### How can quantum computers innovate ML?

#### machine intelligence = data/distributions + models + algorithm/hardware



- QML and HEP
- Variational quantum circuits

# QML and HEP

#### A flavour of current work

#### FERMILAB-PUB-20-184-QIS

#### Quantum Machine Learning in High Energy Physics

Wen Guan, Gabriel Perdue, Arthur Pesah, Maria Schuld, Koji Terashi, Sofia Vallecorsa, Jean-Roch Vlimant

E-mail: jvlimant@caltech.edu

May 2020

Abstract. Machine learning has been used in high energy physics since a long time, primarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy intermediate-scale quantum computing devices, more quantum algorithms are being developed with the ain at exploiting the capacity of the hardware for machine learning applications. An interesting question is whether there are ways to combine quantum machine learning with High Energy Physics. This paper reviews the first generation of ideas that use quantum machine learning on problems in high energy physics and provide an outlook on future anglications.

> Guan, Perdue, Pesah, Schuld, Terashi, Vallecorsa, Vlimant, Quantum Machine Learning in High Energy Physics, arxiv:2005.08582

**Task:** Distinguish pair of photons created by Higgs decay from uncorrelated background events

**Features:** 8 measurements taken on the di-photon system **Quantum technology:** Quantum annealer (hardware) **Quantum algorithm:** Use QUBO to find best (0/1) weights to combine 36 simple ML models ("weak learners") Task: Particle track reconstructionFeatures: Locations of hits + corresponding particles (TrackML challenge)Quantum technology: Qubit-based quantum circuits (simulator)Quantum algorithm: Represent hits as "tree-tensor network" quantum circuit and traingates in the network

Tysz, Carminati, Demirkz, Dobos, Fracas, Novotny, ... & Vlimant (2020), arXiv:2003.08126

Task: Higgs coupling to top quark pairs (ttH)Features: 45 input events (+ PCA)Quantum technology: Qubit-based quantum circuits (simulator + hardware)Quantum algorithm: Variational circuit (SVM interpretation)

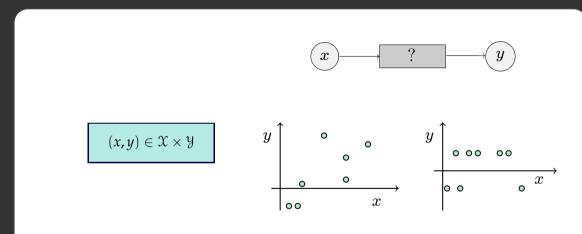
Chan, Guan, Sun, Wang, Wu, Zhou, ... & Di Meglio (2019), PoS, LeptonPhoton2019, 49

**Task:** Classification of signal predicted in Supersymmetry **Features:** SUSY data set in the UC Irvine Machine Learning Repositiory **Quantum technology:** Qubit-based quantum circuits (simulator + hardware) **Quantum algorithm:** Variational circuit (NN interpretation)

Terashi, Kaneda, Kishimoto, Saito, Sawada, & Tanaka (2020), arXiv:2002.09935

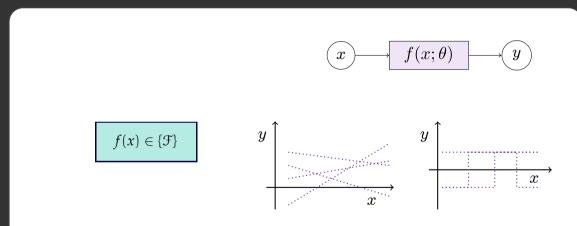
# Variational quantum circuits

# The first ingredient of ML is data.

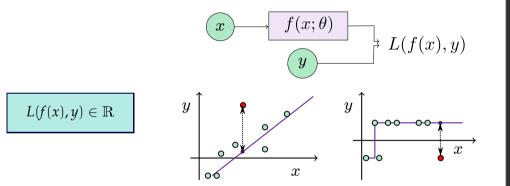


10/25

### The second ingredient of ML is a model family.



#### The third ingredient of ML is a loss.



### The goal of ML is to minimise the "average" loss of the model.

$$\mathbb{E}[L_f] = \int L(f(x), y) \ p(x, y) \ dxdy$$

$$f^* = \min_{f \in \{\mathcal{F}\}} \mathbb{E}[L_f]$$

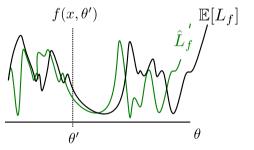
$$\theta'$$

I

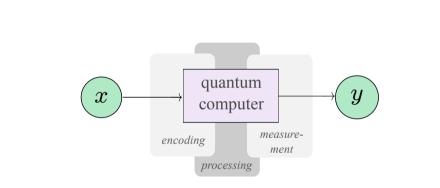
### We can only minimise the average loss on training data.

$$\hat{L}_f = \sum_{(x,y)\in\mathcal{D}} L(f(x), y)$$

$$f^* = \min_{f \in \{\mathcal{F}\}} \hat{L}_f$$



#### Quantum circuits can be used as machine learning models.



Farhi & Neven 1802.06002, Schuld et al. 1804.00633, Benedetti et al. 1906.07682

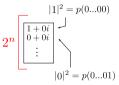
#### Quantum circuits can be used as machine learning models.

|    | import torch                                                       | 1  | from pennylane import *<br>import torch                                                |
|----|--------------------------------------------------------------------|----|----------------------------------------------------------------------------------------|
|    | from torch.autograd import Variable                                |    | from torch.autograd import Variable                                                    |
|    | from corditatograd import variable                                 |    | From Corch.autograd import variable                                                    |
|    | <pre>data = torch.tensor([(0., 0.), (0.1, 0.1), (0.2, 0.2)])</pre> |    | data = $[(0., 0.), (0.1, 0.1), (0.2, 0.2)]$                                            |
|    |                                                                    |    |                                                                                        |
|    |                                                                    | 7  | <pre>dev = device('default.gubit', wires=2)</pre>                                      |
|    |                                                                    | 8  |                                                                                        |
| 6  | <pre>def model(phi, x=None):</pre>                                 | 9  | <pre>@gnode(dev, interface='torch')</pre>                                              |
| 7  | return x*phi                                                       | 10 | def circuit(phi, x=None):                                                              |
| 8  |                                                                    | 11 | <pre>templates.AngleEmbedding(features=[x], wires=[0])</pre>                           |
|    |                                                                    | 12 | <pre>templates.BasicEntanglerLayers(weights=phi, wires=[0, 1])</pre>                   |
|    |                                                                    | 13 | <pre>return expval(PauliZ(wires=[1]))</pre>                                            |
|    |                                                                    | 14 |                                                                                        |
|    | def loss(a, b):                                                    |    |                                                                                        |
|    | return torch.abs(a - b) ** 2                                       |    | return torch.abs(a - b) ** 2                                                           |
|    |                                                                    |    |                                                                                        |
|    | def av_loss(phi):                                                  |    | def av_loss(phi):                                                                      |
|    |                                                                    |    |                                                                                        |
|    | for x, y in data:                                                  |    | for x, y in data:                                                                      |
|    | c += loss(model(phi, x=x), y)                                      |    | c += loss(circuit(phi, x=x), γ)                                                        |
|    |                                                                    |    |                                                                                        |
|    |                                                                    |    |                                                                                        |
|    | <pre>phi_ = Variable(torch.tensor(0.1), requires_grad=True)</pre>  |    | <pre>phi_ = Variable(torch.tensor([[0.1, 0.2],[-0.5, 0.1]]), requires_grad=True)</pre> |
|    | opt = torch.optim.Adam([phi_], lr=0.02)                            |    | opt = torch.optim.Adam([phi_], lr=0.02)                                                |
|    |                                                                    |    |                                                                                        |
|    | <pre>for i in range(5):</pre>                                      |    | <pre>for i in range(5):</pre>                                                          |
|    | <pre>l = av_loss(phi_)</pre>                                       |    | <pre>l = av_loss(phi_) </pre>                                                          |
|    | l.backward()                                                       |    | l.backward()                                                                           |
| 24 | opt.step()                                                         | 30 | opt.step()                                                                             |



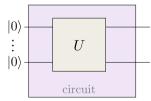
PHYSICAL CIRCUIT

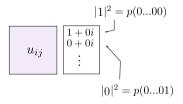






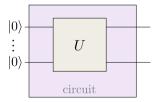
#### PHYSICAL CIRCUIT







#### PHYSICAL CIRCUIT



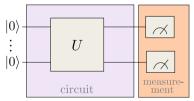
#### MATHEMATICAL DESCRIPTION

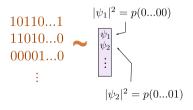
$$\begin{split} |\psi_1|^2 &= p(0...00) \\ \hline \psi_1 \\ \psi_2 \\ \vdots \\ |\psi_2|^2 &= p(0...01) \end{split}$$

16/25



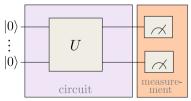
#### PHYSICAL CIRCUIT

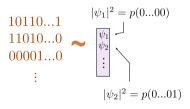




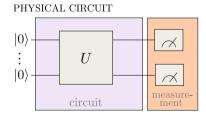


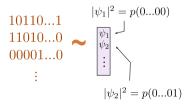
PHYSICAL CIRCUIT





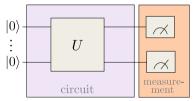


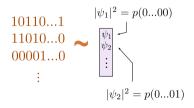






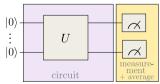
PHYSICAL CIRCUIT







PHYSICAL CIRCUIT

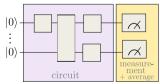


MATHEMATICAL DESCRIPTION





#### PHYSICAL CIRCUIT

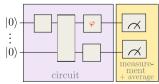




### 1. QCs perform trainable, modular linear operations.



PHYSICAL CIRCUIT



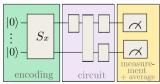
MATHEMATICAL DESCRIPTION

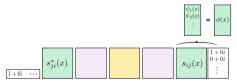


### 2. QCs map data to high-dimensional qstates.

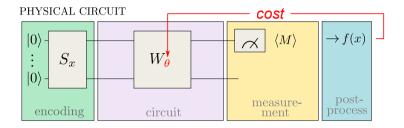


#### PHYSICAL CIRCUIT





#### 3. We can train QCs.

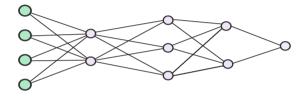


MATHEMATICAL DESCRIPTION



#### Quantum models are linear neural nets in feature space.

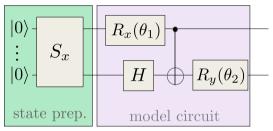
MODEL



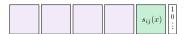


# Quantum models are linear neural nets in feature space.

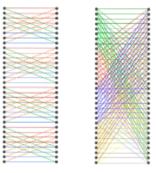
### PHYSICAL CIRCUIT



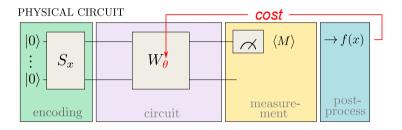
### MATHEMATICAL DESCRIPTION



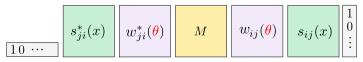
# Quantum models are linear neural nets in feature space.



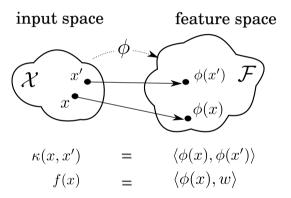
### Schuld & Petruccione, Springer 2018

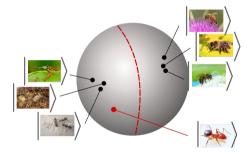


MATHEMATICAL DESCRIPTION

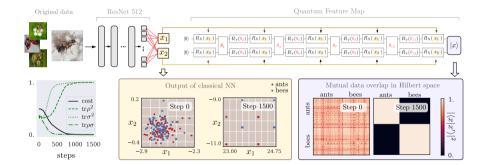


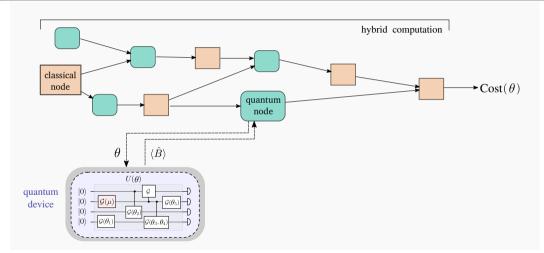
$$x \to |x\rangle = \phi(x)$$



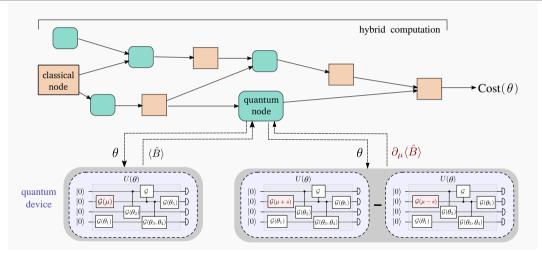




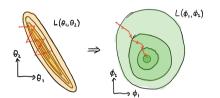


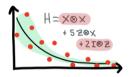


Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184



Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184





Stokes et al. 1909.02108, Kübler et al. 1909.09083, Sweke et al. 1910.01155, Ostaszewski et al. 1905.09692, ...

### Barren plateaus in quantum neural network training landscapes

Jarrod R. McClean,<sup>1, \*</sup> Sergio Boixo,<sup>1, †</sup> Vadim N. Smelyanskiy,<sup>1, ‡</sup> Ryan Babbush,<sup>1</sup> and Hartmut Neven<sup>1</sup>

<sup>1</sup>Google Inc., 340 Main Street, Venice, CA 90291, USA (Dated: March 30, 2018)

Many experimental proposals for noisy intermediate scale quantum devices involve training a parameterized quantum circuit with a classical outprimation loop. Such hybrid quantum-classical algorithms are popular for applications in quantum simulation, optimization, and machine learning. Due to its simplicity and hardware efficiency, random circuits are often proposed as initial guesses for exploring the space of quantum states. We show that the exponential dimension of Hilbert space and the gradient estimation complexity make this choice unsuitable for hybrid quantum-classical algorithms run on more than a few quibts. Specifically, we show that for a wide class of reasonable parameterized quantum circuits, the probability that the gradient along any reasonable direction is non-zero to some fixed precision is exponentially small as a function of the number of qubits. We argue that this is related to the 2-design characteristic of random circuits, and that solutions to this problem must be studied.

Rapid developments in quantum hardware have motivated advances in algorithms to run in the so-called noisy intermediate scale quantum (NISQ) regime [1]. Many of the most promising application-oriented approaches are hybrid quantum-classical algorithms that refy on optimization of a parameterized quantum circuit [2–8]. The resilience of these approaches to certain types of errors and high flexibility with respect to coherence time and gate requirements make them especially attractive for NISQ implementations [3, 9–11].

The first implementation of such algorithms was de-

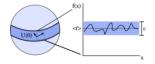
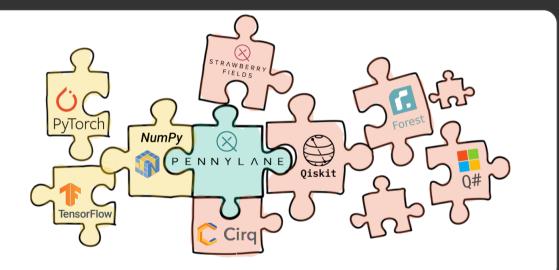


FIG. 1. A cartoon of the general geometric results from this work. The sphere depicts the phenomenon of concentration of

McClean et al. 1803.11173

# quant-ph] 29 Mar 2018



# Open questions...

- What models are quantum circuits?
- Are they actually useful?
- Will they perform well on larger problem instances?
- Will they perform well under noise?
- What problems are they good for?
- ► Is there a problem where they are exponentially better?
- How should I design a quantum model?

- Don't compare quantum models blindly to classical ML.
- Understand the features and models you use.
- Understand what feature map your model performs.
- Think of cutting out the intermediate measurements.
- ► Try continuous-variable quantum circuits for HEP?

# Thank you!

www.pennylane.ai www.xanadu.ai @XanaduAI