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The intersection of quantum computing and ML is rich.
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Approaches range from traditional to near-term QC.
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Approaches range from traditional to near-term QC.
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Software plays a central role in near-term approaches.
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Software plays a central role in near-term approaches.

R uantum machine learning  Instal ugins  Documentation elp aper itHu
(QPENNYLANE  Quant hine | Install Pl D t DHel ar: © GitHub

Using PennyLane

PennyLane Documentation

Introduction
Quantum circuits.
Interfaces

Quantum operations
Measurements

Templates

Optimiz Using PennyLane Developing

Configuration

Development

Developers guide
Building a plugin Features
Research and contribution
+ Follow the gradient Buitn automatic differentiation
of quantum circuits
API @ rumry T Tensorrion  PyTorch
« Best of both worlds. Support or hybrid quantum and
ami classical models; connect quantum hardware ith

aminit PyTorch, TensorFlow, and NumPy. PENNYLANE

qmlinterfaces « Batteries included. Provides optimization and
‘machine leaming tools.

ami.operation :
« Device independent. The same quantum circuit - Cirq rigetti
model can be run on different backends. Instal
amitemplates plugins o access even more devices, inclucing
Strawberry Fields, IBM Q, Google Cirg, Rigetti Forest,
Microsoft QDK, and ProjectQ.

qml.plugins

5% Microsoft

qml.utils
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How can quantum computers innovate ML?

machine intelligence = data/distributions + models + algorithm/hardware




Agenda

OML and HEP

Variational quantum circuits



OML and HEP



rour of current work

FERMILAB-PUB-20-184-QIS

Quantum Machine Learning in High Energy Physics

Wen Guan, Gabriel Perdue, Arthur Pesah, Maria Schuld, Koji
Terashi, Sofia Vallecorsa, Jean-Roch Vlimant

E-mail: jvlimant@caltech.edu

May 2020

Abstract. Machine learning has been used in high energy physics since a long time.
primarily at the analysis level with supervised clissifieation. Quantum computing

was postulated in the early 1980s as way to perform computations that would not
be tractable with a classieal computer. With the advent of noisy intermediate-scale
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quanium computing devices, more quantum algorithms are being developed with the

im at exploiting the capacity of the hardware for machine learning applications. An
interesting question is whether there are ways to combine quantum machine learning
with High Energy Physics. This paper reviews the first gencration of ideas that use
quantum machine learning on problems in high energy physics and provide an outlook
on future applications.

vl [quant-ph] 1
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Guan, Perdue, Pesah, Schuld, Terashi, Vallecorsa, Vlimant,
Quantum Machine Learning in High Energy Physics, arxiv:2005.08582




A flavour of current work

Task: Distinguish pair of photons created by Higgs decay from uncorrelated background
events

Features: 8 measurements taken on the di-photon system

Quantum technology: Quantum annealer (hardware)

Quantum algorithm: Use QUBO to find best (0/1) weights to combine 36 simple ML
models (“weak learners”)

Mott, Job, Vlimant, Lidar, & Spiropulu (2017), Nature, 550(7676), 375-379




A flavour of current work

Task: Particle track reconstruction
Features: Locations of hits + corresponding particles (TrackML challenge)

Quantum technology: Qubit-based quantum circuits (simulator)

Quantum algorithm: Represent hits as “tree-tensor network” quantum circuit and train
gates in the network

Tysz, Carminati, Demirkz, Dobos, Fracas, Novotny, ... & Vlimant (2020), arXiv:2003.08126




A flavour of current work

Task: Higgs coupling to top quark pairs (ttH)
Features: 45 input events (+ PCA)

Quantum technology: Qubit-based quantum circuits (simulator + hardware)
Quantum algorithm: Variational circuit (SVM interpretation)

Chan, Guan, Sun, Wang, Wu, Zhou, ... & Di Meglio (2019), PoS, LeptonPhoton2019, 49




A flavour of current work

Task: Classification of signal predicted in Supersymmetry
Features: SUSY data set in the UC Irvine Machine Learning Repositiory

Quantum technology: Qubit-based quantum circuits (simulator + hardware)
Quantum algorithm: Variational circuit (NN interpretation)

Terashi, Kaneda, Kishimoto, Saito, Sawada, & Tanaka (2020), arXiv:2002.09935




Variational quantum circuits



The first ingredient of ML is data.




The second ingredient of ML is a model family.




The third ingredient of ML is a loss.




The goal of ML is to minimise the “average” loss of the model.

ElLy] = [ L(f(x),y) p(x,y) dxdy

* = min E[L
f fr&g}} [Ly] M




We can only minimise the average loss on training data.




Quantum circuits can be used as machine learning models.
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Farhi & Neven 1802.06002, Schuld et al. 1804.00633, Benedetti et al. 1906.07682




torch

torch.autograd Variable

data = torch.tensor([(8., ©.),

nodel(phi, x=
xiphi

loss(a, b):
torch.abs(a - b) ** 2

av_loss(phi):
c=0
X, y in data:
¢ += loss(nodel(phi, x=x), y)
c

phi_ = Variable(torch.tensor(0.1)
opt = torch.optim.Adam([phi_], =0.02)
i (5):

1 = av_loss(phi_)

1.backward()

opt.step()

(8.1, 6.1), (8.2, 0.2)]) data = [(0., 0.), (8.1, 0.1),

Quantum circuits can be used as machine learning models.

pennylane
torch

torch.autograd Variable

(0.2, 6.2)]

dev = device( =2)

Ganode (dev
circuit(phi, x=| )H
templates. AngleEnbedding (Featunes=ix], =[0])
templates. BasicEntanglerLayers(
expval(Pauliz( =[1]))

=phi, =[e, 1])

loss(a, b):
torch.abs(a - b) *x 2

av_loss(phi):
c=0
X, data:
¢ += loss(circuit(phi, x=x), y)
c

= Variable(torch.tensor([[0.1, 8.2],[-8.5, 8.1]])
=0.02)

opt = torch.optim.Adam([phi_]

i 5):
1 = av_loss(phi_)
L.backward()
opt.step()




The mathematics of quantum Computers.

PHYSICAL CIRCUIT MATHEMATICAL DESCRIPTION
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The mathematics of quantum Computers.

PHYSICAL CIRCUIT MATHEMATICAL DESCRIPTION
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The mathematics of quantum Computers.

PHYSICAL CIRCUIT

U

circuit

MATHEMATICAL DESCRIPTION
WAP = p(0...00)

1111
1112 \

[v2]* = p(0...01)




The mathematics of quantum Computers.

PHYSICAL CIRCUIT
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The mathematics of quantum Computers.

PHYSICAL CIRCUIT MATHEMATICAL DESCRIPTION
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The mathematics of quantum Computers.

PHYSICAL CIRCUIT MATHEMATICAL DESCRIPTION
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The mathematics of quantum Computers.

PHYSICAL CIRCUIT MATHEMATICAL DESCRIPTION
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The mathematics of quantum Computers.

PHYSICAL CIRCUIT
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The mathematics of quantum Computers.

PHYSICAL CIRCUIT MATHEMATICAL DESCRIPTION
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1. QCs perform trainable, modular linear operations.

PHYSICAL CIRCUIT MATHEMATICAL DESCRIPTION
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2. QCs map data to high-dimensional gstates.

PHYSICAL CIRCUIT MATHEMATICAL DESCRIPTION
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3. We can train QCs.

PHYSICAL CIRCUIT I ﬁ
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Quantum models are linear neural nets in feature space.

MATHEMATICAL DESCRIPTION
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Quantum models are linear neural nets in feature space.

PHYSICAL CIRCUIT
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Quantum models are linear neural nets in feature space.
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Schuld & Petruccione, Springer 2018




Quantum models are natural kernel methods.

PHYSICAL CIRCUIT
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Quantum models are natural kernel methods.




Quantum models are natural kernel methods.

input space feature space




Quantum models are natural kernel methods.

Lloyd et al. 2001.03622




Quantum models are natural kernel methods.
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We can compute gradients.

D hybrid computation
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Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184




We can compute gradients.

D hybrid computation
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Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184




We can compute gradients.

L(3,,9,)
L(6,,6,)

Stokes et al. 1909.02108, Kiibler et al. 1909.09083, Sweke et al. 1910.01155, Ostaszewski et al. 1905.09692, ...




We can compute gradients.

Barren plateaus in quantum neural network training landscapes

Jarrod R. McClean,!* Sergio Boixo,"! Vadim N. Smelyanskiy,""! Ryan Babbush,! and Hartmut Neven!

' Google Inc., 340 Main Street, Venice, CA 90201, USA
(Dated: March 30, 2018)

Many experimental proposals for noisy intermediate scale quantum devices involve training a
parameterized quantum cireit with a classical optimization loop. Such hybrid quantum-classieal
algorithms are popular for applications in quantum simulation, optimization, and machine learning.
Due to its simplicity and hardware efficiency, random circuits are often proposed as initial guesses
for exploring the space of quantum states. We show that the exponential dimension of Hilbert space
and the gradient estimation complexity make this choice unsuitable for hybrid quantum-classical
algorithms run on more than a few qubits. Specifically, we show that for a wide class of reasonable
parameterized quantum circuits, the probability that the gradient along any reasonable direction is
non-zero to some fixed precision is exponentially small as a function of the number of qubits. We
argue that this is related to the 2-design characteristic of random cireits, and that solutions to this
problem must be studied

r 2018
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Rapid developments in quantum hardware have moti-
vated advances in algorithms to run in the so-called noisy
intermediate scale quantum (NISQ) regime [1]. Many of
the most promising application-oriented approaches are
hybrid quantum-classical algorithms that rely on opti-
mization of a parameterized quantum circuit [2-8]. The
resilience of these approaches to certain types of errors
and high flexibility with respect to coherence time and
gate requirements make them especially attractive for
NISQ implementations [3. 9-11]. F - A cartoon of the general geometrie results from this

The first implementation of such algorithms was de-  Work: The sphere depiets the phenomenon of concentration of

int-ph] 29 M

s

Ju
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We can compute gradients.
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Open questions...

What models are quantum circuits?

Are they actually useful?

Will they perform well on larger problem instances?
Will they perform well under noise?

What problems are they good for?

Is there a problem where they are exponentially better?

How should I design a quantum model?




...and some advice.

Don’t compare quantum models blindly to classical ML.
Understand the features and models you use.
Understand what feature map your model performs.

Think of cutting out the intermediate measurements.

Try continuous-variable quantum circuits for HEP?




Thank you!

www.pennylane.ai
www.xanadu.ai
@XanaduAl




