

New jet tagging techniques at CMS

Dennis Schwarz

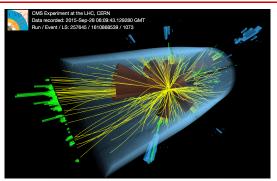
on behalf of the CMS Collaboration

ICHEP 2020

GEFÖRDERT VOM

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Introduction

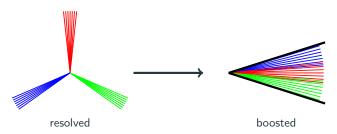


- Abundant jet production at the LHC with manifold origins:
 - Gluons
 - Light quark flavors
 - Boosted heavy objects (Top, W, Z, Higgs)
 - Pile up
- Many LHC analyses rely on efficient and stable identification

Boosted heavy objects

- Search for new heavy particles
- \rightarrow Decays into high- p_T Top/W/Z/Higgs
- \rightarrow Boosted decays
- \rightarrow Reconstruction of hadronic decays in a single jet

Example: top quark

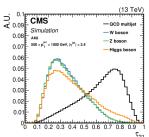


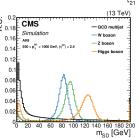
JINST 15 (2020) P06005

- Identification of jet origin using jet substructure
- N-prong structure of the jet

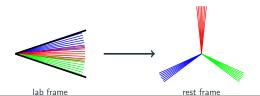
 → Energy distribution functions
 (e.g N-subjettiness ratio τ_{21} or τ_{32})

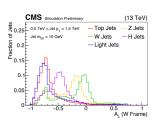
- Sensitivity to origin particle mass
 - ightarrow Jet mass $m_{
 m jet}$ or $m_{
 m SD}$
- \rightarrow Can we do better?

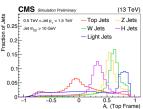




- Boost jet into rest frame assuming top/W/Z/H mass
- If boost is correct.
 - → Isotropic angular distribution
 - → Momentum symmetry in rest frame
- Fully connected neural network with additional jet properties (N-subjettiness, mass, ...)

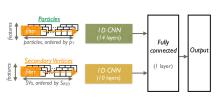


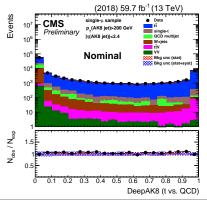




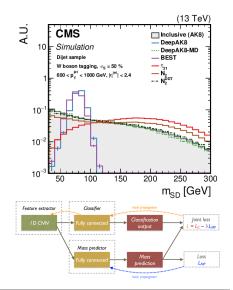
$$A_L = rac{\sum_{
m jet}
ho_z^{
m jet}}{\sum_{
m jet}
ho^{
m jet}}$$

- Multi-class classifier
- Machine learning approach using particle candidates
- Properties of up to 100 jet constituents and 7 secondary vertices
- Two separate networks, later combined with fully connected layer





- DeepAK8 learns jet mass as feature
 - \rightarrow Sculpts m_{iet} distribution
 - \rightarrow Complicates background estimation
- De-correlation with mass predictor network
 - \rightarrow Penalty if outputs largely correlated with mass
- → Efficiency stable against jet mass after de-correlation

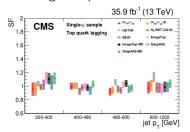


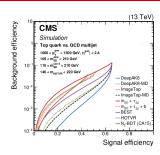
Performance and validation

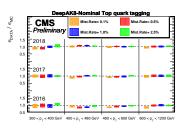
UH it

JINST 15 (2020) P06005, CMS DP-2020-025

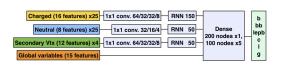
- Large machinery validates tagger performance in CMS
- Machine learning approaches already outperform classical taggers
- Correction factors are derived via tag and probe method

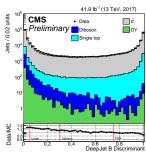


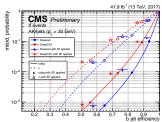




- Identification of small radius jets (AK4)
- Distinguish quark flavors and gluons
- Deep neural network approach
- Inputs: Charged, neutrals, secondary vertices, global jet variables





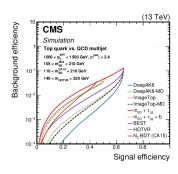


- Pile up jet identification (PU ID)
- Boosted decision tree
- Jet and event variables
- Huge improvement in $2.5 < |\eta| < 2.75$ region with new pixel layer!



Summary

- Jet identification crucial for LHC analyses
- Large machinery within CMS validates performance
- Categorization of jets profits from machine learning techniques and lots of new taggers are developed



And there is more:

- ImageTop [JINST 15 (2020) P06005]
- Particle Net [Phys. Rev. D 101, 056019 (2020), CMS DP-2020-002]
- ...