PUNCH4NFDI — Lattice QCD contribution

Bielefeld, Bonn, DESY-Zeuthen, (Frankfurt), FZ-Juelich, (Mainz), (Munich), Regensburg, Wuppertal

International collaborations:

Budapest-Marseille-Wuppertal Collaboration

European Twisted Mass Collaboration

HotQCD Collaboration

Coordinated Lattice Simulations effort (CLS): Alpha, Mainz,

RQCD.....

participation in international software development&optimization efforts

- GRID library
- QUDA library
- SciDAC-4 (Scientific Discovery through Advanced Computing)

HotQCD: An example for an international Lattice QCD Collaboration

Summit@ORNL

Cori@NERSC

Marconi@Cineca

PizDaint@CSCS

JUWELS @FZ-Juelich

Bangalore-Bielefeld-BNL-Chennai-Michigan-Regensburg-Tsukuba-Wuhan

using ~ 5PB data

NSC3@CCNU

GPU Cluster@Bielefeld

XIPhi XVI@JLab

QPACE 3 @FZ-Juelich

Generation, Storage, Analysis of Data

TASK AREA 2&4

distributed data sets (lattice data grid)

- develop modern interface
- adapt data access protocols
- provide modern workflow managment tools

TASK AREA 3

 methods for analyses across datasets develop and maintain interfaces to stored data, (format conversion) & software libraries;

ensure compatibility with data and metadata formats

numerical methods

develop and maintain new analysis software specific to German lattice QCD community and related to experimental research programs at RHIC/EIC, LHC, FAIR,...

adapt hardware specific software to new archtiectures

provide efficient software solutions for heterogeneous compute environement

Optimization of analysis software

efficiently on highly parallel and

heterogeneous architectures

Conjugate gradient solvers on Intel Xeon Phi and NVIDIA GPUs, Bielefeld-BNL-NVIDIA, PoS Lattice 2014

Prepare for usage of new hardware

Lattice QCD on Arm architectures, Regensburg, PoS Lattice 2018;

SVE-enabling Lattice QCD Codes, Regensburg, FZ-Juelich, 2018 IEEE International Conference on Cluster Computing

- adapt analysis software to new hardware architectures;
- develop efficient multi-GPU and multi-node inverter for sparse matrices

Analysis software specific to German lattice QCD community

- develop, maintain and contribute to lattice QCD specific libraries (GRID, QUDA,...)
- making software tools, specific to German research profile, available to a wider community
 - implementing efficient solvers (multigrid, deflated CG, block solver) in a platform independent way as well as providing highly optimized platform specific solutions
 - provide higher level analysis code for the efficient evaluation, construction and storage of n-point Greens functions (Regensburg) as well as high order moments of charge fluctuations (Bielefeld)

Contribution to task area 3

- (i) develop and maintain interfaces to the libraries used in the lattice QCD community to ensure compatibility with the data and meta-data formats as well as the middleware developed in task areas 2&4
- (ii) develop and maintain new analysis software specific to the German lattice QCD research programs that are related to the experimental programs at RHIC@BNL, LHC@CERN, the future FAIR facility at GSI as well as planned next generation accelerators such as EIC, FCC etc.
- (iii) adapt the hardware abstraction layer of existing analysis software to new hardware architectures, such as ARM SVE, next generation GPUs, etc.
- (iv) enable our software tools to work and run efficiently on highly parallel architectures, including the analysis of partitioned data. This also requires the architecture-specific optimization of workflow for heterogeneous computing platforms in terms of computing vs. memory efficiency.