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Outline
❖ TMDs and Parton Branching (PB) method

❖ Application in Drell-Yan (DY) production

❖ DY production at LHC

❖ DY production at low mass
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TMD
❖ TMDs (Transverse Momentum Dependent parton distributions)

❖ Transverse momentum effects are naturally coming from intrinsic     and 
parton showers

❖ New approach: Parton Branching method
❖ Determine integrated PDF from parton branching solution of evolution 

equation 
❖  Cover all transverse momenta from small     to large     as well a large 

range in x and   

❖ provide a novel method to solve evolution equations.

❖ Determine TMD:
❖ Since each branching is generated explicitly, energy-momentum 

conservation is fulfilled and transverse momentum distributions can be 
obtained

kt

kt

μ2
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TMD
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❖ Parton Branching evolution generates every single branching:
❖ Kinematics can be calculated at every step

❖ Fit performed using xFitter frame (with collinear Coefficient functions at NLO)
❖ using full HERA 1+2 inclusive DIS (neutral current, charged current) data
❖ in total 1145 data points
❖ Kinematic range:

❖ Using starting distribution as in HERAPDF2.0

—> Can be easily extended to include any other measurement for fit!

3.5 < Q2 < 50000 GeV2, 4 × 10−5 < x < 0.65

χ2/ndf = 1.2

——more details in Sara’s talk 



TMD distributions
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❖ Difference essentially in low      region 
❖ experimental and model uncertainties obtained from fit, small
❖ at very low     , uncertainties from intrinsic      sizable 

kT

kT kT



Application to Drell-Yan production
❖ Application in Drell-Yan (DY) production

❖ DY production at LHC

❖ DY production at low mass
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DY at 8 TeV
❖ MC@NLO: generate the hard process, while soft and collinear parts from NLO 

are subtracted.
❖ TMD adds those soft and collinear parts back.
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DY with PB TMD, Bermudez Martinez, A. et al, 
PRD. 100.074027, arXiv:1906.00919

❖ DY production very well described by 
         TMD with MC@NLO
❖ TMD with MC@NLO describes  low      

part
❖ small uncertainties in small      region 
❖ scale uncertainties from hard process 

sizable!
❖  at larger      contribution from DY+1 jet 

significant.

qT

qT

qT

ATLAS (2016). DY at 8 TeV, 
EPJC 76, 291, 1512.02192



DY at 13 TeV

❖ Very good description of low pT region
❖ at large pT contribution from higher order matrix elements important  

❖ uncertainties in PB method mainly from scale of MC@NLO matrix element. 
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Bermudez Martinez. A, et al, arXiv:2001.06488 SMP-17-010, JHEP12 (2019) 061



Application to Drell-Yan production
❖ Application in Drell-Yan (DY) production

❖ DY production at LHC

❖ DY production at low mass and small 
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DY at low mass and small 
❖ at low mass, little room for QCD evolution

❖ pT of DY is dominated by intrinsic kT and by soft gluons,                  
which need to be resummed

❖ Latest measurement: PHENIX (PhysRevD. 99. 072003) at

              =200 GeV for  4.8               8.2 GeV        
❖ Other measurements (older)

❖ R209 (1982) PhysRevLett. 48.302 at       = 62GeV (data 
read from plot in paper)

❖ NUSEA (2003) hep-ex/0301031 at       = 38 GeV 
(unpublished)

❖ Can PB method with MCatNLO be applied to small        ?
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Comparison with measurements

❖ Mass distribution well described with PB pdfs
❖ Sensitive only to collinear pdf

❖ At smallest      , large x probed
❖ Pdfs are fitted to HERA data and not 

well constrained at large x
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DY pT spectrum 

❖ DY pT spectrum well described with PB 
with MC@NLO
❖ Good agreement within uncertainties:

❖
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NuSea R209 PHENIX
1.08 1.27 1.04χ2/ndf



Conclusion
❖ Application to pp processes, DY: 

❖ DY qT-spectrum without new parameters 
❖ Agree well with results from LHC at low pT

❖ DY qT-spectrum at low mass and low energies well described
❖ Success of PB TMDs with MC@NLO:

❖ Describe DY production over wide range
❖ Proper prediction of low pT spectrum-needed for m(W) determination 
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Backup
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Thank you for your attention!



DGLAP evolution-solution with Parton branching method 

❖ DGLAP evolution in differential form

 
❖ Sudakov form factor:

 
❖ introduce Sudakov form factor:

 

❖ Then one obtains its integral form:

 

μ2 ∂
∂μ2

f(x, μ2) = ∫
dz
z

αs

2π
P(R)(z)f( x

z
, μ2)

Δs(μ2) = exp( − ∫
zM

dz∫
μ2

μ2
0

αs

2π
dμ′�2

μ′�2
P(R)(z))

μ2 ∂
∂μ2

f(x, μ2)
Δs(μ2)

= ∫
dz
z

αs

2π
P(R)(z)
Δs(μ2)

f( x
z

, μ2)

No-branching probability from       to μ2
0 μ2

!15

f(x, μ2) = f(x, μ2
0)Δs(μ2)+∫

zM

x

dz
z ∫

μ2

μ2
0

dμ′�2

μ′�2
Δs(μ2)
Δs(μ′�2)

P(R)(z)f( x
z

, μ′�2)



PB: Iterative solution
 

❖ Solve integral equation via iteration:
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Transverse Momentum Dependence
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❖ Parton Branching evolution generates every single branching:
❖ Kinematics can be calculated at every step

❖ Give physics interpretation of evolution scale:
❖      -ordering:

❖ Angular ordering:

pT

μ = qT

μ = qT /(1 − z)



Drell-Yan production: qT spectrum
❖ Drell-Yan (DY) production

❖  
❖ add      for each parton as function of      and       

according to TMD
❖ Keep final state mass fixed:

❖    and      (light-cone fraction) are different after 
adding 
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qq̄ → Z0



Matching to hard process: MC@NLO method
❖ MC@NLO: soft and collinear parts from NLO are subtracted, that can be added 

back by TMD or parton shower later.
❖ MC@NLO without shower unphysical

❖ use herwig6 subtraction terms
❖  low      region affected by subtraction of

           Soft & collinear parts
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The transverse momentum spectrum of low mass Drell-Yan 
production at next-to-leading order in the Parton Branching 
method, Bermudez Martinez. A, et al, arXiv:2001.06488
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❖ Z-boson production at 8 TeV ATLAS is compared with prediction  
MC@NLO with PB-TMD.    

❖ Predictions using PB-2018-Set1(        ) 
and Set2 (                    ) parton 
distributions:
❖ Set1 overshoots the measurements  at 

small qT.
❖ Set2 agrees well with measurement. 

❖ The deviation at higher qT comes 
from missing higher order 
contributions in the matrix element 
calculation.
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ATLAS (2016). DY at 8 TeV, EPJC 76, 291, 1512.02192

αs(q)
αs(q(1 − z))

Z-boson production at 8TeV



Z-boson production at 8TeV
❖ Z-boson production at 8 TeV ATLAS is compared with prediction  

MC@NLO with PB-TMD.    
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ATLAS (2016). DY at 8 TeV, EPJC 76, 291, 1512.02192

❖ Predictions using PB-2018-Set1(        ) 
and Set2 (                    ) parton 
distributions.

❖ Varying the mean of intrinsic kt 
distribution by factor 2, small

αs(q)
αs(q(1 − z))



Z-boson production at 13 TeV

❖ The prediction agrees well with the 
measurement in the low pT region, 

❖ but deviates at high pT because of 
missing Z+jets matrix element 
calculation.

❖ The dominate theory uncertainties 
are from scale of MC@NLO matrix 
element. 
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CMS (2016). DY at 13 TeV, submitted, 1909.04133

❖ Z-boson production at 13 TeV CMS is compared with prediction  
MC@NLO with PB-TMD.    



Z-boson production at 13 TeV
❖ Z-boson production at 13 TeV CMS is compared with predictions  MC@NLO 

with PB-TMD. 
          aMC@NLO, POWHEG, MINLO                     PB-TMD,  Resbos, Geneva .    
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❖  

❖ The PB TMD prediction describes data well at low pT.



Z-boson production at 8 TeV
❖ Z-boson production at 8 TeV ATLAS is compared with prediction  

MC@NLO with PB-TMD.    

❖ The       distribution are compared also. 
❖

ϕ *

!24 ATLAS (2016). DY at 8 TeV, EPJC 76, 291, 1512.02192



Difficulties at small qT and small 
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DY at low mass and small 

❖ Contribution of real 1 parton emission 
increases with 

❖ NLO corrections are large at small            
(factor of 2 or more) because scale (      )  
is small and               is large!
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Constraints on intrinsic kT
❖ The intrinsic kT is included in starting distribution:
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A0,b(x, k2
T, μ2

0) = f0,b(x, μ2
0) ⋅ exp( − |k2

T | /2σ2)/(2πσ2)

 change width σ2 = q2
s /2 of Gauss distribution (default qs = 0.5 GeV ) .



Predictions from MCatNLO+PYTHIA8

❖ Differences observed using Monash tune in pythia8
❖ Pythia8 too high at high energy
❖ Pythia8 too low at low energy
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Predictions from MCatNLO+PYTHIA8

❖ Differences observed using Monash tune in pythia8
❖ Intrinsic kT in pythia8 cannot be simply tuned to describe both high and low 

energy data
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