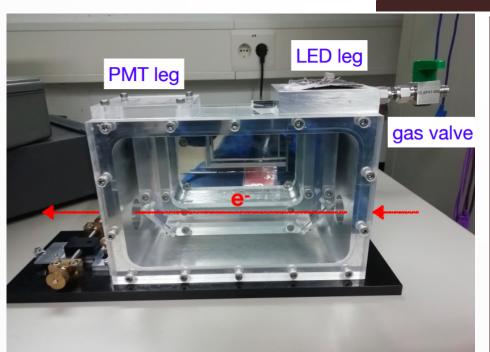
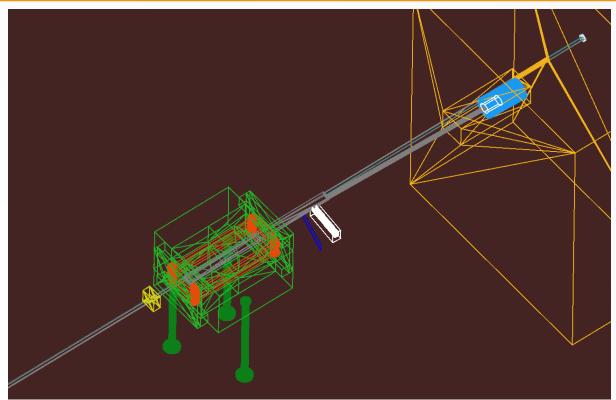
γ – LASER Mode Beam Monitoring & Scintillation Detectors

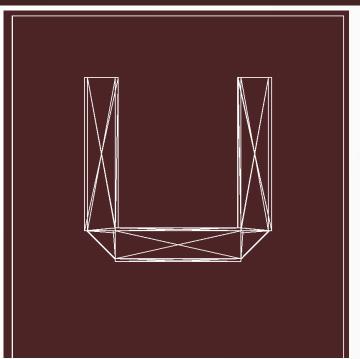
John Hallford

University College London

28/07/2020




Scintillator/Cerenkov in GEANT4


Have implemented geometries for an example simple Scintillating screen and more detailed Cerenkov Devices. Instantiated by

DetectorConstruction::ConstructScintCerenkov()

Takes key parameters from LXSetUp.cc

Scintillator/Cerenkov in GEANT4

I have set up Cerenkov and Scintillation Physics which can be turned on or off, and collect data for histograms (HistoManager) in SteppingAction.

These processes slow down simulation but should not affect validity of background simulation at IP.

Will push a version with these detectors to lxsim git stash (new branch) with physics/histograms commented out

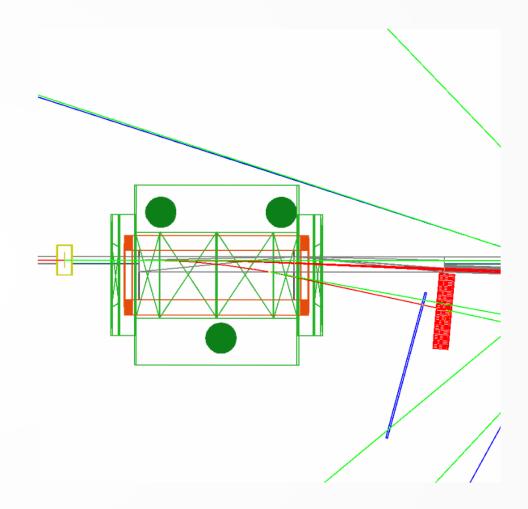
```
ScintCerenkovPhysics = false;
ScintAngle = 15. *deg;
ScintXpos = -350. *mm;
ScintZpos = DumpMagnetZpos + (1520./2. + 300.) *mm; // defining in relation to
position of the beam-dump magnet and its length
CerenkovAngle = 5. *deg;
CerenkovXpos = -340. *mm;
CerenkovZpos = DumpMagnetZpos + (1520./2. + 500.) *mm;
ScintX = 500. *mm;
ScintY = 100. *mm;
ScintZ = 1. *mm;
CerenkovWallWidth = 0.15 *mm;
CerenkovBoxThickness = 1. *mm;
CerenkovWindowThickness = 0.3 *mm:
CerenkovchannelX = 9. *mm;
CerenkovchannelY = 9. *mm:
CerenkovchannelZ = 50. *mm;
                               // will crash if not even!! unfortunately...
CerenkovChannels = 50;
CerenkovLegHeight = 50. *mm;
ScintMaterial = "Polystyrene";
CerenkovMetal = "Aluminium";
CerenkovMedium = "ArgonGas";
```

Scintillator/Cerenkov in GEANT4

These materials take a fair load of memory (compared to the rest of the geometry)

So, given time, I can make a simplified version, if necessary

This was done in lxsim retrieved Sunday. Code has changed since (Dump + magnet rotated 90°) and needs tweaks


Total memory consumed for geometry optimisation: 405 kByte Total CPU time elapsed for geometry optimisation: 0.01 seconds Voxelisation: top CPU users: Percent Total CPU System CPU Memory Volume 100.00 0.01 0.00 96k World 0.00 0.00 0.00 1k logicTAUICContainer 0.00 0.00 0.00 24k logicTypMBMagnetContainer
Percent Total CPU System CPU Memory Volume 100.00 0.01 0.00 96k World 0.00 0.00 0.00 1k logicTAUICContainer
100.00 0.01 0.00 96k World 0.00 0.00 0.00 1k logicTAUICContainer
100.00 0.01 0.00 96k World 0.00 0.00 0.00 1k logicTAUICContainer
0.00 0.00 0.00 1k logicTAUICContainer
2 th toget ypribling ite teet the
0.00 0.00 0.00 24k logicTypMBMagnetContainer
0.00 0.00 0.00 Ok logicComptonDetContainer
0.00 0.00 0.00 1k logicBPipeComptonContainer
0.00 0.00 0.00 0k logicDetContainer
0.00 0.00 0.00 0k logicBremsTargetContainer
0.00 0.00 0.00 1k logicGMContainer
0.00 0.00 0.00 0k logicGammaTargetContainer
Voxelisation: top memory users:
Percent Memory Heads Nodes Pointers Total CPU Volume
63.54 257k 647 2892 9828 0.00 CerenkovWingLogical
23.69 96k 212 1260 2838 0.01 World
5.79 23k 57 286 779 0.00 logicTypMBMagnetContainer
5.79 23k 57 286 779 0.00 logicTypMBMagnetContainer
0.32 1k 7 10 44 0.00 logicGMContainer
0.27 1k 4 13 28 0.00 logicTAUICContainer
0.190k39190.00logicBPipeComptonContainer0.150k35200.00logicVCContainer
0.15 0k 3 5 20 0.00 logicVCContainer
0.07 0k 1 3 8 0.00 logicComptonDetContainer
0.07 0k 1 3 8 0.00 logicDetContainer
4WT5 > /run/verbose 2

Implementation

We are implementing a union of the two detectors to measure the e- energy spectrum.

A Cherenkov set-up to measure the high-flux high-energy part of the spectrum, and a scintillator — with some cross-over region — to measure the low-energy (more important!) part of the distribution.

The cross-over region may be constructed as long as desired, as the Scintillating screen will have little effect on the Cherenkov signal.

Scintillating Material

Plastic-based materials are cheap and flexible in molds.

This material is unfortunately susceptible to radiation damage, in a way that is not well understood.

It's unlikely, given this and the typically lower light output, that a plastic mold will be used.

PROPERTIES	EJ-200	EJ-204	EJ-208	EJ-212				
Light Output (% Anthracene)	64	68	60	65				
Scintillation Efficiency (photons/1 MeV e ⁻)	10,000	10,400	9,200	10,000				
Wavelength of Maximum Emission (nm)	425	408	435	423				
Light Attenuation Length (cm)	380	160	400	250				
Rise Time (ns)	0.9	0.7	1.0	0.9				
Decay Time (ns)	2.1	1.8	3.3	2.4				
Pulse Width, FWHM (ns)	2.5	2.2	4.2	2.7				
No. of H Atoms per cm ³ (x10 ²²)	5.17	5.15	5.17	5.17				
No. of C Atoms per cm ³ (x10 ²²)	4.69	4.68	4.69	4.69				
No. of Electrons per cm ³ (x10 ²³)	3.33	3.33	3.33	3.33				
Density (g/cm³)	1.023	1.023	1.023	1.023				
Polymer Base		Polyvinyltoluene						
Refractive Index		1.58						
Softening Point		75°C						
Vapor Pressure		Vacuum-compatible						
Coefficient of Linear Expansion		7.8 x 10 ⁻⁵ below 67°C						
Light Output vs. Temperature		At 60°C, L.O. = 95% of that at 20°C No change from 20°C to -60°						
Temperature Range	-20°C to 60°C							

Scintillating Material

Inorganic, crystalline scintillators will typically produce more light per unit energy.

Will also be more sensitive to temperature fluctuations but this should be controllable.

Scintillator	Light yield (photons/keV)	Light ouput(%) of NaI(TI) bialkali pmt	Temperature coefficient of light output(%/C) 25°C to 50°C	1/e Decay time(ns)	Wavelength of max emission Im(nm)	Refractive index at Im	Thickness to stop 50% of 662 keV photons (cm)	Thermal expansion (/C)x10-6	Density g/cm³	Hygroscopic	Comments
LaBr ₃ (Ce+Sr)	73	190	0	25	385	-2.0	1.8	8	5.08	yes	Ultimate energy resolution (2.2% @ 662keV)
LaBr₃(Ce) BrilLanCe™ 380	63	165	0	16	380	-1.9	1.8	8	5.08	yes	General purpose, excellent energy resolution
CLLB Cs ₂ LiLaBr ₆ (Ce)	43	115		180 1080	420	-1.85	2.2		4.2	yes	Dual Gamma-Neutron detection, excellent
Nal(Tl)	38	100	-0.3	250	415	1.85	2.5	47.4	3.67	yes	General purpose, good energy resolution
Nal(Tl+Li)	35	100	-0.3	230. 1.1μs 240, 1.4μs	419	1.85	2.5	47.4	3.67	yes	Neutron-Gamma Scintillator
LaCl₃(Ce) BrilLanCe™ 350	49	70-90	0.7*	28	350	-1.9	2.3	11	3.85	yes	General purpose, good energy resolution
CsI(Na)	41	85	-0.05	630	420	1.84	2	54	4.51	yes	High Z, rugged
LYSO Lu _{1.8} Y _{.2} SiO ₅ (Ce)	33	87	-0.28	36	420	1.81	1.1		7 .1	no	Bright, high Z, fast, dense, background from ¹⁷⁶ Lu activity
CdWO4	12-15	30-50	-0.1	14000	475	-2.3	1	10.2	7.9	no	Low afterglow, for use with photodioides
CaF2(Eu)	19	50	-0.33	940	435	1.47	2.9	19.5	3.18	no	Low Z, α & β detection

Example inorganic scintillators from

https://www.crystals.saint-gobain.com/products/crystal-scintillation-materials

Camera

We can effectively measure the screen from nearly any angle as light emission is isotropic. We can also make use of mirrors to reflect the light toward the camera, as long as the light intensity is high enough for the optical path distance. We therefore have some freedom here. Must study the possible adverse effects of background radiation with simulation.

Scientific Cameras + Lens can be very expensive. Need to understand if we really need such an expensive setup!

One thing we might not need is fast shutter speed with bunch arrival 10 Hz. Will investigate soon..

Exact camera used in AWAKE: Andor iStar 340T can cost ~ €50k

acA2000-340km - Basler ace Alternatively for ~ €1k:

The Basler acA2000-340km Camera Link camera with the CMOSIS CMV2000 CMOS sensor delivers 340 frames per second at 2 MP resolution.

Summary

Scintillator and Cerenkov Devices instantiated in lxsim GEANT4 branch 'ScintCerenkov'.

Scintillator screen Dimensions/Geometry - Largely figured out

Scintillator screen Material - Working out an optimal choice

Scintillator Supporting structures – Depends on Scintillator material

Optical Path - depends on Calculations/simulation still to be done

Camera - Requires further understanding before advancing

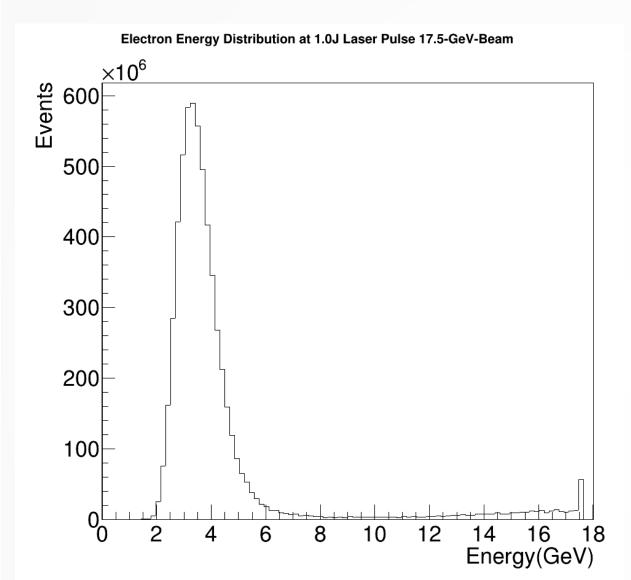
DAQ - Details depend on camera

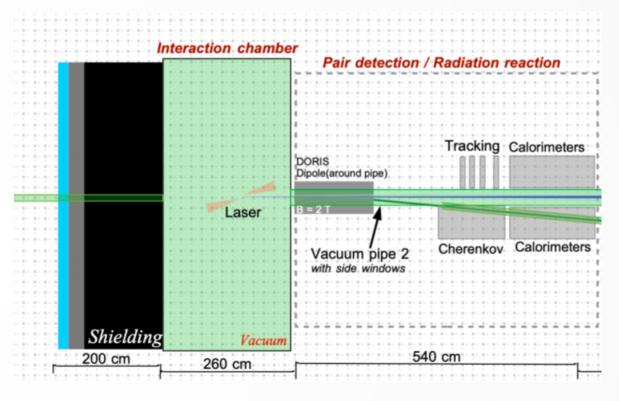
Extra – Beampipe modifications – To be simulated to determine if this is necessary/useful

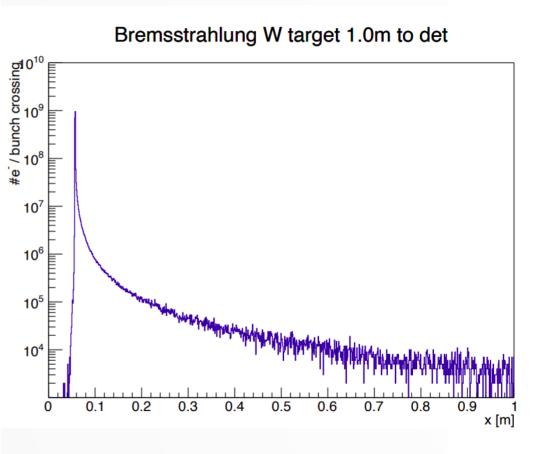
Backup

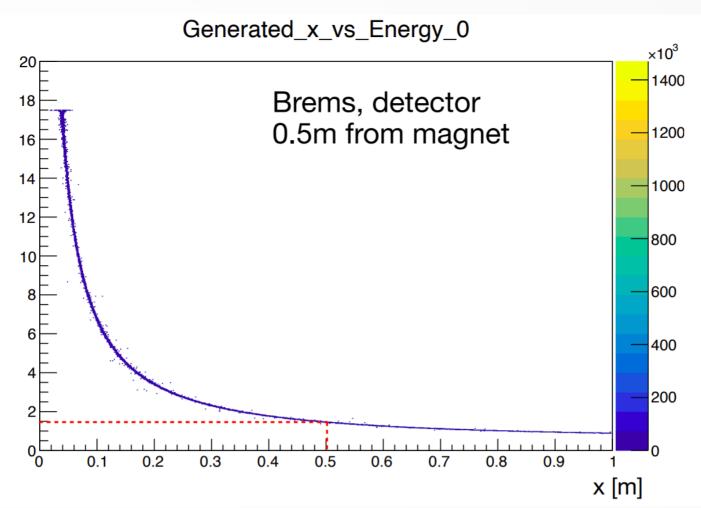
Further Reading:

Evidence of deep-blue photon emission at high efficiency by common plastic
H. Nakamura, Y. Shirakawa, S. Takahashi and H. Shimizu https://iopscience.iop.org/article/10.1209/0295-5075/95/22001/fulltext/


Matthew's talk, present on the indico Main meeting page. Wednesday, 15 January 2020 https://indico.desy.de/indico/event/25104/


The AWAKE Electron Spectrometer F. Keeble et al. https://cds.cern.ch/record/2649943


Example plastic scintillators from: https://eljentechnology.com/products/plastic-scintillators/ej-200-ej-204-ej-208-ej-212


Example inorganic scintillators from https://www.crystals.saint-gobain.com/products/crystal-scintillation-materials

Example cameras as in AWAKE: https://andor.oxinst.com/products/istar-intensified-cameras

Comparison with Cherenkov

- Finer spatial resolution than with Cherenkov devices
- Constructing an especially wide Cherenkov device becomes increasingly labour-intensive & technologically complex, but no complication for a Scintillator Detector
- A camera's dynamic range limits the granularity of the intensity but the same will be true for photodetectors attached to Cherenkov
- High-energy or high intensity particle flux can lead to saturation, depending on material, which can complicate recovering the energy spectrum
- Sensitive to high-energy photons including synchrotron radiation.
- -Naturally, we can measure with resolution in 'y' direction. This can be used for gauging background (if uniform with y) levels.

14