P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

Recent results by the CMS group 90th Meeting of the Physics Research Committee

Patrick L.S. CONNOR

 $\stackrel{\text{on behalf of}}{\text{the CMS group}}$

Deutsches Elektronen-Synchrotron Hamburg

5 November 2020

P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

Outline

- LHC status
- Physics analysis

- Tracker alignment
- Luminosity monitoring
- Generic R&D •
- Phase-2 upgrade

Note: acronyms & references are clickable and defined in appendix.

LHC status.

P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

Schedule

- Beam test from 27 September to 10 October 2021.
- Injectors will have YETS from week 41 (2021) to week 4 (2022).
- Early start in November 2021
- Close experimental caverns on 1 February 2022.
- Start with HL *pp* collisions in April.
- \rightarrow Review situation mid of March 2021.

Goal for 2022

- Targeting $\mathcal{O}(50 \text{ fb}^{-1})$
- Similar PU as in 2018

Impact on Detector upgrades

- ATLAS installs NSW
- CMS installs new shielding
- ALICE & LHCb complete their Phase-1 upgrades

LHC status

Physics Analysis.

Ongoing analyses $H
ightarrow Z
ho, Z\phi$ H au au Yukawa coupling

Physics Analysis

Search for rare decays in $H o Z ho, Z \phi$

Dominant channel

Selection

Suppressed channel

- Select di-lepton events with $60 \text{ GeV} < m_{ll} < 120 \text{ GeV}$
- Select track pairs of opposite charges with $\Delta R < 0.1$ $(p_T^{\text{leading}} > 10 \text{ GeV}, p_T^{\text{subleading}} > 1 \text{ GeV})$
- Require track pair isolation.
 - Apply meson mass window.

Physics Analysis Ongoing

LHC status

PRC90 P. Connor

 $\begin{array}{c} \text{analyses} \\ H \rightarrow \\ Z\rho, Z\phi \end{array}$

H au auYukawa coupling

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

5/24

Physics Analysis Search for rare decays in $H \rightarrow Z\rho, Z\phi$

Procedure & result

137 fb⁻¹ (13 TeV)

160 165

160

165 m_{IIKK} [GeV]

155

137 fb⁻¹ (13 TeV)

155 m_{llππ} [GeV]

- Fit $m(ll\pi\pi)$ and m(llKK) to extract the signal.
- Upper limits on BR depend on polarisation.

Published results

	Prediction	Upper limits at 95% CL
$\mathcal{B}(Z\rho)$	$(1.4 \pm 0.1) \times 10^{-5}$	0.0105 - 0.0131
$\mathcal{B}(Z\phi)$	$(4.2 \pm 0.3) \times 10^{-6}$	0.0031 - 0.0040

Physics

 $H \rightarrow$

Yukawa

Tracker

R&D

Physics Analysis

CP structure of $H\tau\tau$ Yukawa coupling

Context & Methodology [2]

13 TeV

$$\mathcal{L}_Y = -\frac{m_\tau H}{v} \left(\underbrace{\kappa_\tau \bar{\tau} \tau}_{\rm SM} + \underbrace{\tilde{\kappa}_\tau i \bar{\tau} \gamma_5 \tau}_{\rm BSM} \right)$$

Parameterise CP even and odd couplings via the mixing angle $\phi_{\tau\tau}$:

$$\tan(\phi_{\tau\tau}) = \frac{\tilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

The CP information is transferred to spin correlations of the two τ s.

 \longrightarrow Probe structure via angle ϕ_{CP} between the **decay planes** of the τ s.

Utilise ML techniques to optimise S/B. $\longrightarrow Z \rightarrow \tau \tau$, $H \rightarrow \tau \tau$, fake τ s.

P. Connor

LHC status

Physics Analysis Ongoing analyses $H \rightarrow$ $Z\rho, Z\phi$ Yukawa

coupling

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

137 fb⁻¹ (13 TeV) CMS Preliminary CMS Preliminary 137 fb⁻¹ (13 TeV) Observed: $\hat{\phi}_{\tau\tau}^{\text{obs.}} = 4 \pm 17^{\circ} (68\% \text{ CL})$ 10 A× S/(S+B) Weighted Events / bin 1.2 + Data – Bkg. Expected: $\hat{\phi}_{\tau\tau}^{\text{exp.}} = 0 \pm 23^{\circ}(68\% \text{ CL})$ $\rho\rho + \pi\rho + \mu\rho$ 99.7 Bkg. uncert. 8 $--\phi_{\tau\tau} = 0$ 0.8 $--- \phi_{\tau\tau} = 90^{\circ}$ $2\Delta \log \mathcal{L}$ 6 0.6 0.4 95% 4 0.2 2 68% -0.2 n φ_{CP} (degrees) -90 -4545 90 0 $\phi_{\tau\tau}(\text{degrees})$

Results

We distinguish CP-even from CP-odd with observed (expected) sensitivity of 3.2 (2.3) σ :

- Fully consistent with SM
- Excludes next-to-minimal SUSY model in this phase space
- → Leading uncertainty is statistical.

Physics Analysis

CP structure of $H\tau\tau$ Yukawa coupling

Tracker Alignment.

Run-2 Developments

P. Connor

LHC status

Physics Analysis

Tracker Alignment Run-2 Developments

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

CMS Freimmary Data and MC 2017 1800 Freimmary Data and MC 2017 1

Strategies & Performance [3, 4, 5]

- Significantly deeper understanding of alignment w.r.t. Run-1, in particular in context of high-radiation environment.
- Include a comparison to performance in MC.
- Describe automated / online alignment, first high-precision alignment (used for most published analyses) & Legacy alignment (for most upcoming measurements as well as Open Data).

P. Connor

LHC status

Physics Analysis

Tracker Alignment Run-2 Developments

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

Recent development with MillePede-II

- Re-organise part of the implementation (caching, sparsity, vectorisation)
- Parallelisation (in particular, porting to GPUs)

Online alignment

- Run-2 automated alignment had very few degrees of freedom.
- Working on more elaborated online alignment to follow faster changes in the detector.

Tracker Alignment

Developments

Luminosity monitoring.

Context Recent progresses

PRC90 P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring Context Recent progresses

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

cooling loop of PLT (existing)

Luminosity monitoring Context

Reminder

- BCM1F: bunch-by-bunch online luminosity measurement.
 - 2×2 *C-shape* PCBs directly surrounding the beam pipe at 1.8 m from the IP on each side.
 - Each C-shape PCB includes 6 sensors, *i.e.* 12 channels.
- Run-3 upgrade: replace diamond sensors by silicon sensors.
 - Better S/N.
 - Active cooling
 - AC-coupled read-out.
 - \longrightarrow collaboration with CERN

DESY's contributions

- Dicing and testing sensors.
- SMD assembly.

- ASIC bonding on PCB.
- 3D-printed covers.

PRC90 P Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring Context Recent progresses

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

Luminosity monitoring Recent progresses

BCM1F upgrade for Run-3

- Protection cover for transportation (upper left picture).
- Double-diodes produced on upgrade-tracker wafer « half-moons » (middle left picture).
- Sensor dicing (lower left picture) and characterisation at DESY (bottom right diagrams & picture on next slide)
 - 25 double-pad sensors tested so far: found similar behaviour.
 - $\bullet ~ \sim 50$ more wafer half-moon sensors just shipped from Vienna.

Generic Detector R&D.

Enhanced Lateral Drift Sensor Electron CT

P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Enhanced Lateral Drift Sensor

Electron CT

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

Generic Detector R&D

Enhanced Lateral Drift Sensor

Concept (developed in DESY)

Modified electric field (\uparrow) in the **lateral** direction results in charge sharing at almost any MIP incident position.

 \longrightarrow Almost $3\times$ better position resolution at 150 μm detector thickness.

Status

- Test structure with one buried layer (produced in collaboration with the industry).
 - \longrightarrow Doping profile within specifications.
- Wafer layout with three buried layers ready for production including different types of modules (pixels, strips, diodes).

P Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Enhanced Lateral Drift Sensor

Electron CT

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

Concept (developed in DESY)

- Based on multiple Coulomb scattering in matter.
- Measure trajectory of electrons for \neq incident angles (using GBL).
- Calculate width of angular distribution per pixel.
- Iterative image reconstruction using statistical method.

Applications

GeV

Electron

- This novel technique with electrons (instead of standard CT with photons) can be applied to objects with more material budget.
- The more material budget, the higher the beam energy should be.
- Investigating potential applications in medical physics with 200-MeV electrons

Generic Detector R&D

Electron CT

Tracker Phase-2.

Reminder 2S module PS module Dee prototype Disk integration

P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2 Reminder 2S module PS module Dee prototype Disk integration

HGCAL

Summary & Conclusions

Back-up

16/24

E 1200 1.0 1.2 1.4 1.8 1000 2.0 800 2.2 600 2.4 2.6 400 200 4.0 z [mm]

Tracker Phase-2

End-cap structure

end-cap	5 double-disks
double-disk	4 Dees
Dee	(equipped with) $PS + 2S$ modules

PS module (blue)

DESY's major contributions

- Design of 2S & PS modules.
 Production of 1250 PS modules.
 Integration of one TEDD.
 - \longrightarrow close collaboration with Karlsruhe, Aachen, Louvain & Lyon

PRC90 P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2 Reminder 2S module PS module Dee prototype Disk integration

30 X

80

60

400

200

200

400

HGCAL

Summary & Conclusions

Back-up

X Correlation of MIMOSA26 0 and CMSPhase2 30

600

60

50

40

30

20

10

1000

MIMOSA26.0 X

800

Tracker Phase-2 2S module

First functional 2S module built

- Testing and tuning of module in DAF successful.
- Test beam measurements took place last week.

 \longrightarrow correlation between module and telescope seen, but synchronization lost regularly.

 \longrightarrow Investigations will continue in the coming weeks!

PRC90 P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2 Reminder 2S module PS module Dee prototype Disk integration

HGCAL

Summary & Conclusions

Back-up

18/24

Proposal

Module design (top left pictures)

- Substantial increase of *power consumption estimates* for front-end electronics & expected fluences w.r.t. previous estimates.
- \longrightarrow R&D effort in order to improve thermal performance of modules and support structures.
- New design includes four spacers (instead of two).

 \longrightarrow More homogeneous heat transfer for nearly same material budget.

→ Approved by CMS as baseline!

Tracker Phase-2

PS module

During assembly of glass prototype: Lowering [PSs + 4 spacers] onto [MaPSA + baseplate]

Prototype (top right picture)

Successful PS sandwich assembly using four prototype spacers.

P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2 Reminder 2S module PS module Dee prototype Disk integration

HGCAL

Summary & Conclusions

Back-up

Tracker Phase-2

MaPSA test stand

- Semi-automatic probe station in DAF.
- Development of the code to auto-control the probe station and DAQ system.

Toward first half PS module

- Prototyping with FEH only on RHS (instead of two as in design).
- DESY is involved in DAQ software & firmware developments for PS module.
- Most of Outer Tracker hybrid test systems are ready for procurement.

PRC90 P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2 Reminder 2S module PS module Dee prototype Disk integration

Summary & Conclusions

Back-up

Tracker Phase-2 Dee prototype

Position of inserts (arrows)

- Mostly within 200 µm tolerance
- One outlier

Note: Some PS inserts were filled with glue \rightarrow production process will be improved for future production.

Flatness

- Within specifications
- Total min/max < 1.0 mm

20/24

PRC90 P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2 Reminder 2S module PS module Dee prototype Disk integration

HGCAL

Summary & Conclusions

Back-up

21/24

Test

- DESY & Lyon full-size prototypes combined with our integration tooling.
- Originally planning tests in autumn with Lyon's Dee prototype
- \longrightarrow preparing for back-up solution due to constraints related to the pandemic, probably taking place early next year.

Tracker Phase-2 Disk integration

HGCAL.

Reminder Recent activity

P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL Reminder

Recent activity

Summary & Conclusions

Back-up

HGCAL Reminder

Context

Replace current pre-shower + ECAL + HCAL in forward region in order to face Phase-2 conditions.

 \longrightarrow Take advantage of experience developed in the context of detectors at future e^+e^- colliders (CALICE).

Design

CMS design dictated by radiation levels:

scintillator SiPM-on-Tile technology (with intrinsic amplification) wherever possible

silicon radiation-harder elsewhere → common read-out ASIC, namely HGCROC

P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL Reminder Recent activity

Summary & Conclusions

Back-up

HGCAL Recent activity

Development & assembly of tile-modules at DESY ASICs, DCDC converters, scintillators

Tile-module prototype in DESY test beam

- Custom SiPMs from Hamamatsu in thermally conductive package
 - \longrightarrow Dedicated to CMS.
- Injection-moulded tiles from Russia, wrapped in reflector foils at DESY

 \longrightarrow Automation for massive production in DAF.

 \longrightarrow First particle signals recently recorded with HGCROC!

Summary & Conclusions.

P. Connor

LHC status

Physics Analysis

Tracker Alignment

Luminosity monitoring

Generic Detector R&D

Tracker Phase-2

HGCAL

Summary & Conclusions

Back-up

Summary & Conclusions

Physics analysis

- First experimental limits on Higgs rare decays.
- CP violation in Higgs production.

+ Many results in Higgs, Top, QCD, SUSY & Exotica on their way to publication!

Detector development

tracker alignment preparing reference for Run-2, preparing automation for Run-3;

luminosity measurement refurbishment of detector with silicon-based technology to face higher radiation;

generic detector R&D new design for silicon detector, electron tomography; tracker upgrade 2S & PS modules, mounting in Dees, disk integration test; HGCAL preparation for automated massive production, first beam tests.

Vielen Dank für Ihre Aufmerksamkeit!

Back-up.

P. Connor

Acronyms References

- 2S 2-Strip (module). 22, 23, 32
- AC Alternative Current. 15
- ALICE A Large Ion Collider Experiment. 4
- ASIC Application-Specific Integrated Circuit. 15, 29, 30

Acronyms I

- ATLAS A Toroidal LHC ApparatuS. 4
- BCM1F Fast Beam Conditions Monitoring. 15, 16
 - BR Branching Ratio. 7, 8
 - BSM searches Beyond the SM. 7
- CALICE CAlorimeter for LInear Collider Experiment. 29
- CERN European Organisation for Nuclear Research. 15
 - CL Confidence Level. 8
- CMS Compact Muon Solenoid. 4, 24, 29, 30
 - CP Conjugation-Polarity. 9, 10, 32
- CT Computed Tomography. 20
- DAF Detector Assembly Facility. 25, 30
- DAQ Data Acquisition. 25
- DCDC Direct-Current to Direct-Current. 30
- DESY Deutsches Electroknen-Synchrotron. 15, 16, 19, 20, 22, 25, 27, 30
- ECAL Electromagnetic CALorimeter. 29

P. Connor

Acronyms References

FEH Front-End Hybrid. 25

Acronyms II

- GBL General Broken Lines. 20
- GPU Graphical Process Unit. 13
- HCAL Hadronic CALorimeter. 29
- HGCAL High-Granularity Calorimeter. 32
- HGCROC HGCAL ROC. 29, 30
 - HL High-Luminosity. 4
 - IP interaction point. 15
 - LHC Large Hadron Collider. 2
 - LHCb LHC beauty. 4
- MaPSA Macro Pixel Sub-Assembly. 25
 - MC Monte Carlo. 12
 - MIP Minimum-Ionising Particle. 19
 - ML Module Level (actually sensor level). 9
 - NSW New Small Wheels. 4
 - PCB Printed-Circuit Board. 15
 - PS Pixel-Strip (module). 22, 24-26, 32
 - PS Parton Shower. 22

P. Connor

Acronyms References

Acronyms III

- QCD Quantum Chromodynamics. 32
- RHS Right-hand side. 25
- SiPM Silicon Photo-Multiplier. 29, 30
 - SM Standard Model. 10
- SMD Surface-mounted device. 15
- SUSY Super Symmetry. 10, 32
- TEDD Tracker End-cap Double Disk. 22
- YETS Year-End Technical Stop. 4

References I

CMS Collaboration. Search for decays of the 125 GeV Higgs boson into a Z boson and a ρ or ϕ meson. 2020. arXiv: 2007.05122 [hep-ex].

- Analysis of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV. Tech. rep. CMS-PAS-HIG-20-006. Geneva: CERN, 2020. URL: https://cds.cern.ch/record/2725571.
 - "CMS Tracker Performance results for full Run 2 Legacy reprocessing". In: (Feb. 2020). URL: http://cds.cern.ch/record/2713208.

"CMS Tracker Alignment Parameter Errors performance results for full Run 2 Legacy reprocessing". In: (Apr. 2020). URL: https://cds.cern.ch/record/2717927.

"Additional Run 2 CMS Tracker Alignment Performance Results". In: (July 2020). URL: https://cds.cern.ch/record/2727090.

PRC90

P Connor

Acronyms References