Computing and ATLAS Highlights

90th PRC meeting

Ruchi Gupta

on behalf of the DESY-ATLAS group Nov 5, 2020

Computing Highlights

Computing Resources at DESY

• Significant WLCG T2 Grid resources at DESY

- 18k CPU cores, majority from ATLAS and CMS
- Almost 20 PB of disk storage
- DESY significantly exceeds the WLCG pledges, CPU and disk, for both ATLAS and CMS
- Very reliable and stable service

National Analysis Facility (NAF)

- Complements Grid infrastructure for more interactive end user analysis
- Access for German HEP groups
- Batch system CPU heavily utilised
- Exclusively Centos7 from December
- Fast local parallel file system with several PB, still sufficient remaining capacity
- Access to DESY GPU resources

Transitions, Improvements and New Initiatives

- Network improvements
 - **Up to 100 Gbps** for up- and download
 - Good utilisation, occasionally reaching the maximum rate
- ATLAS and CMS also in transition away from deprecated GridFTP transfers to Third Party Copy
 - Gradual move to WebDAV and XrootD
- CMS migration to use **Rucio by end of November**
 - Replacement for Phedex + DDM
 - Almost all central services are now switched
 - Education of users, expansion of the Rucio community
 - Opens new opportunities for management of user data

• New Helmholtz funded project: **Deep Generative models for fast and precise physics Simulation (DeGeSim)**

- ATLAS-CMS combined project to work on deep generative models for simulation for pile-up in Run 3 (ATLAS) and calorimeters in HL-LHC (CMS)
- Two PhD students funded by <u>Helmholtz AI</u>
- Project team involves ML experts from Jülich Helmholtz Center and TRIUMPH (Canada)

Covid Simulations: ATLAS and CMS contributions to Folding@Home

- Significant volunteer computing contributions by DESY to aid research into the Corona Virus
 - Integration of non-standard workflows into distr. compute Ο
- Both ATLAS and CMS contributed to the **Folding@Home** effort as part of the "CERN & LHC Computing" team for 6 months this year
 - ATLAS: ~ 30k slots from trigger farm and another 30k slots Ο from WLCG resources, shared among about 55 sites, including DESY-HH/ZN
 - CMS: ~ mainly running on HLT (60k cores), with Grid sites Ο providing an additional 5k, including DESY-HH
- ATLAS and CMS top contributors to CERN & LHC Computing team, followed by the IceCube GPUs at DESY-Zeuthen
- ATLAS also submitted Folding@Home jobs on up to 32 GPUs
 - Collaboration with DESY-IT to use up to ten of the GPUs in Ο the NAF (ATLAS/CMS/Uni-HH)

Team: CERN & LHC Computing

Date of last work unit	2020-10-07 08:23:47	
Active CPUs within 50 days 489,568		
Team Id	38188	
Grand Score	<u>80,991,255,501</u>	
Work Unit Count	<u>16,049,784</u>	
Team Ranking	17 of 255075	
Homepage	http://public.web.cern.ch/public/	
Fast Teampage URL	https://apps.foldingathome.org/teamstats/team38188.html	

Team members

ATLAS Highlights

ATLAS group during the COVID-19 era

Annual group outing (virtual) Oct,2020

Overview of Group Activities

Detector

Operation &

ware

1001

evelopmint

Detector Operation and Upgrade

- Operation, monitoring and calibration of current detector (Pixels/SCT)
- Design, tests and assembling of future detector: ITk

Object performance

- Relies also on detector expertise
- Identification and calibration of jets, b-jets, electrons and photons

Data analysis From SM and Higgs boson to Dark Matter searches: involvement in several analyses, relying on detector and object expertise

Software and tools Online & offline software development and maintenance Proposal and development of tools and methods

Highlights of ATLAS Analysis Results

since April, 2020

Several publications and conference results

- Standard Model Measurements
 - Single boson measurements
 - PDF fitting
 - Photon induced WW production
- Higgs Precision Measurements and Searches
 - H→4ℓ
 - Н→үү
 - Higgs combination
 - ttH(H \rightarrow bb), H \rightarrow Z γ

- Top quark processes
 - 4tops production
 - Lepton flavor violation
- Search for new phenomena :
 - Dark Matter production and coupling to the higgs boson
 - SUSY searches
 - Extra dimensions, majorana neutrinos

Highlights of ATLAS Analysis Results

since April, 2020

Several publications and conference results

- Standard Model Measurements
 - Single boson measurements
 - PDF fitting
 - Photon induced WW production
- Higgs Precision Measurements and Searches
 - H→4ℓ
 - Η→γγ
 - Higgs combination
 - ttH(H \rightarrow bb), H \rightarrow Z γ

- Top quark processes
 - 4tops production
 - Lepton flavor violation
- Search for new phenomena :
 - Dark Matter production and coupling to the higgs boson
 - SUSY searches
 - Extra dimensions, majorana neutrinos

Higgs Mass Measurement

- $H \rightarrow ZZ^* \rightarrow 4I$:
 - Clean final state
 - Excellent Higgs mass resolution
- First Higgs mass measurement with full Run-2 dataset

ATLAS-CONF-2020-005

Higgs Mass Measurement

Degrassi et al., arXiv:1205.6497

- Higgs boson mass m_H is a free parameter in SM
- All properties of the Higgs boson are predicted in SM once the value of $m_{\rm H}$ is fixed
 - Important when looking for deviations from SM in the Higgs sector

- Higgs mass as currently measured lies at the edge of EW instability and stability regions for the SM.
 - Precise measurement of higgs (and top) mass important for understanding the stability of the EW vacuum

Higgs mass M_h in GeV

Analysis Strategy H→4ℓ

- Recover final state radiation (FSR)
 - 1% improvement in $m_{\rm H}$ resolution
- Constrain leading lepton pair mass to m₇ distribution
 - Improves m_H resolution by 17%
- Replace the mass width by per-event m_{41} resolution
 - Obtained for every event using dedicated NN
 - ~2% improvement in m_{H} precision, more robust to fluctuations

Analysis Strategy H→4ℓ

- Recover final state radiation (FSR)
 - 1% improvement in $m_{\rm H}$ resolution
- Constrain leading lepton pair mass to m₇ distribution
 - Improves m_H resolution by 17%
- Replace mass width by per-event m₄₁ resolution
 - Obtained for every event using dedicated NN
 - ~2% improvement in m_{H} precision, more robust to fluctuations
- Background ZZ^* shapes from smoothed MC
- Parametrize m₄₁ distribution as double-sided Crystal Ball function
- Analysis categories based on lepton flavour and a boosted decision tree (BDT)

Mass Measurement $H \rightarrow 4\ell$

- Obtain m_H from log-likelihood fit to 16 categories
- Higgs Mass : m_H = 124.92 ± 0.21 GeV
- 15% improvement over previous ATLAS result

Leading systematic uncertainties

Systematic Uncertainty	Impact (GeV)
Muon momentum scale	+0.08, -0.06
Electron energy scale	± 0.02
Muon momentum resolution	±0.01
Muon sagitta bias correction	±0.01

Higgs Couplings Combination

Combination of several Higgs measurements in the main Higgs decay channels with up to 139 fb⁻¹ of data

- Higgs production mode cross-sections measured
- Particle coupling to the higgs boson vs particle mass

Higgs Couplings Combination

Combination of several Higgs measurements in the main Higgs decay channels with up to 139 fb⁻¹ of data

- Higgs production mode cross-sections measured
- Particle coupling to the higgs boson vs particle mass
- Interpretation of combined measurements
 - 2 Higgs Doublet Model (2HDM)
 - Minimal Supersymmetric extension of Standard Model (MSSM)
 - Standard Model Effective Field Theory (SMEFT)
 - i. linearized model as well as including quadratic BSM terms
 - ii. Now able to fit multiple strength parameters simultaneously

All measured parameters are consistent with the SM expectation within their uncertainty.

LHC as a photon collider

arXiv:2010.04019 Submitted to Phys Lett B Link to ATLAS Physics Briefing Link to CERN Courier Post Link to DESY News

Photon induced WW Production at the LHC

- Test the gauge structure of standard model (SM)
 - Leading order involves only the processes with **self-coupling** of electroweak gauge bosons
- Search for signs of anomalous quartic gauge couplings (WWyy)

Analysis Strategy

γγ→₩₩→*θνμν*

- Full run 2 data analysed
- Events with an e[±]µ[∓] pair
- No additional tracks near the eµ vertex (ie. n_{trk} = 0)

- Main Backgrounds
 - pp \rightarrow WW and Drell-Yan (DY) pp \rightarrow Z \rightarrow tr
 - Tracks from pile-up vertices
- Main Challenge:
 - Modelling of n_{trk} for various backgrounds

Signal and Background Corrections

Background modelling of n_{trk}

pp->WW and DY $\tau\tau$ processes

- Underlying Event (UE) activity not modelled well by MC
- corrections using $pp \rightarrow Z \rightarrow II$ data events

n_{trk} from pile-up interactions :

- Tracks coming from pile-up vertices could be matched to the event vertex
- Correct pile-up MC due to imperfect modelling of tracks from PU vertices
 - using $pp \rightarrow Z \rightarrow II$ data events

Signal MC is corrected for

- a. Probability that proton interacts inelastically after the photon radiation
- b. Simulation of dissociative $\gamma\gamma \rightarrow WW$ is not available
- Data-driven correction factor derived from $\gamma\gamma{\rightarrow}\text{II}$
- Signal Scale Factor = 3.59 ± 0.15 (tot.)

Tracks from pile-up interactions

Photon induced WW Production at the LHC

Signal Extraction

- Simultaneous fit to 4 regions in $n_{trk}^{}$, $p_{T}^{e\mu}$ space
- 307 observed, 132 background events expected
- First observation of this process with 8.4σ (6.7σ expected)
- Fiducial Cross-section:

 $\sigma_{\text{meas}} = 3.13 \pm 0.31 \,(\text{stat.}) \pm 0.28 \,(\text{syst.}) \,\text{fb}$

Towards Run3

Towards Run3

- Analysis of Run2 data will continue until 2022 and beyond
- ATLAS Software
 - New release (r22) under preparation for re-processing of Run 2 (spring 2021) data and then for Run 3
 - **Coordination** of the AthenaMT/Configuration **migration for tracking**
- Migration/re-write and validation of several ATLAS packages in new software release (r22)

Monte Carlo Production

- New workflows to speed up the production process
- Possible Implement of new hardware (HPC, GPU) into the production system
- Improve pile-up simulation in Monte Carlo samples
- Luminosity Measurement : Automate Tier 0 processing for luminosity determination
- SCT Operation:
 - Time dependent noisy channels in calibration database
 - Optimisation of preamplifier and shaper currents
- Missing Transverse Energy Trigger : Tuning and optimisation of new algorithms on the new L1 hardware
- Object Reconstruction and Performance
 - **Flavour Tagging** : Study impact of new tracking and vertexing software
 - e/gamma
 - Tuning of e/γ reconstruction including new conditions (TRT gas)
 - Re-derive ad improve identification algorithms and energy calibration

High Luminosity LHC

Overview of Upgrade Activities

Silicon strip tracker for HL-LHC

- Working on the realisation of one full end-cap for the ATLAS ITk Strip detector
- At DESY:
 - Sensor studies and quality control testing
 - Module development, building and testing
 - Module loading onto petal cores
 - Petal core production and testing
 - End of substructure (EoS) card
 - Endcap integration at DESY and CERN
 - CO₂ cooling
 - And many other tasks

Last 6 months: Concentrating in Hamburg and Zeuthen to move from single module production and testing to more complete systems.

ITk strips Endcap

DESY involved in every step!

Module Building : Gluing and Wirebonding

ITk strips Endcap

DESY involved in every step!

ITk strips Endcap

DESY involved in every step!

A lot going on at DESY ...

Sensor Testing

Module Building

DESY.

Hybrid Burn-in

ATLAS ITk Strip Hybrid Burn-In Crate

Petal Building

Petal 09: electrical petal

Petal Loading

Module Building

Gluing of ASICs on hybrid and hybrids on sensor

- Using glue dispensing robot and tools
- Metrology done using 3D optical measurement glue heights and sensor flatness well within the specifications
- High repeatability and accuracy achieved in glue dispensing exceeding specification

Built and tested **first R2 module** for the ITk

- Optimization of gluing for the module of new geometry done within a short timescale
- Gluing performed at Hamburg, wirebonding at Zeuthen
- Important to test modules of all geometries (RO-R5)
- To be loaded on the first ABCStar (close to final) version of an electric petal

Thermal and Electric Module Testing

- Stringent Quality Control (QC) for every device during the production ٠
- Module QC : 10 thermal cycles between -35°C and +40°C ٠
- Electric Tests done using an injected calibration pulse ٠
 - Establish the overall functionality and readout of the module •
 - Measure gain and input noise of all the channels in the module

Endcap Module Testing Setup

- An automated testing system necessary to have quality control under coherent conditions at all the production sites
- Electric Testing expertise gained by testing numerous devices built/received at DESY
- First prototype of coldbox **designed and built at DESY** for ITK strips endcap
- Commissioning of the coldbox with an R0 ABCStar module •
 - Use heat pads and a mock module structure on the other three chucks Ο

Coldbox Setup

- 4 chucks for modules of any endcap Ο geometry
- Use an industrial chiller with peltier Ο coolers to reach the desired temperatures

Power supplies. DAQ boards. Monitoring Equipment

Chiller

Cold Box Commissioning

- Using one R0 ABCStar module
- Electric Tests at extreme temperatures compared with test bench results
- Further improvements in place to reduce cycle time
- Complete Automation of thermal cycling and electric testing Ongoing

- Computing infrastructure working efficiently and being used heavily.
- DESY continues to play an important role in ATLAS detector operation, upgrade projects, computing, simulation, measurements and searches for new phenomena
 - Most of the activities not discussed today
- 16 journal papers and 8 preliminary results with a strong DESY contribution released since the last PRC
- ATLAS Highlights presented today illustrating:
 - leading role in Run2 physics measurements and searches covering wide range of physics
 - Strong presence in preparations for Run3 in software, reconstruction and performance groups
 - Excellent progress toward the construction of an ITk strip end-cap for the HL-LHC