Cerenkov Detectors: Radiation Tolerance & Helium Issue

Ruth Jacobs

LUXE technical meeting 15th July 2020

The Helium issue

Figure 13-15: Bulb materials and variations in helium partial-pressure inside photomultiplier tubes

- originally proposed to use Helium as a Cerenkov gas (very low refractive index)
- problem: Helium diffuses through Silica glass (and basically everything else)
- increases the gas pressure within the photodetector
- · leads to afterpulses, eventually to breakdown of the tube
- Hamamatsu: gaseous PMTs should not be operated in Helium environments
- Helium is also problematic wrt gas tightness...

Cannot use Helium + normal PMT tube → Argon instead?

Si PMTs + Filters

- Silicon PMT (e.g. Hamamatsu S13315 series)
- advantage: easier to have fine channel segmentation (1x1mm)
 - cheaper (8x8 1x1mm anodes 600\$, no HV needed)
 - flexible anode configuration
 - immune to magnetic fields
 - no "burn-in" effect for high light intensities
- gain is 10⁵-10⁶, can not be reduced indefinitely (breakdown)
- absorbtive neutral-density filter to reduce light intensity (can get down to 0.01% transmission)

Rate mitigation before

Medium	Refractive Index n	N _¥ per primary 300-650nm	N _y per primary 185-650nm
C4F10	1.0014	230	495
Air/Argon (15°, 1atm)	1.00028	46	100
Helium (0°, 1atm)	1.000036	6	13

Gas: reduction by factor ~40!

PMHB0746E 108 PMT gain vs. voltage 107 -00/-03 TYPE 106 Gain: reducing PMT GAIN 10⁵ operating voltage → reduction factor ~100! -01/-20/-100/-200 TYPE 104 10³ 102 400 600 800 1000 SUPPLY VOLTAGE (V)

→ Can reach necessary reduction of PMT anode charge by ~4 orders of Magnitude!

Comparison

Action	Reduction Factor (He+Gas PMT)	Reduction Factor (Ar+SiPMT+Filter)
C₄F ₁₀ → Helium	40	X
C₄F ₁₀ → Argon	Х	5
Lower PMT voltage	25	X
Shorter channel	10	10
SiPMT + Neutral Density Filter (0.1% Transmission)	Х	1000
TOTAL	104	5x10 ⁴

→ Can reach necessary reduction of anode charge!

Impact on Channel Dimensioning

before, used 18mm y-channel width by default (size of PMT anode), but with SiPMT • could go lower

- need additional
 - collimation/shielding!
 - scattering on box?

Compton: - use 1x1mm channels

Radiation tolerance

- radiation damage in gases: radiation changes chemical properties of the gas (i.e. dissolution of covalent molecule bonds, polymerization)
- noble gases are least susceptible to radiation damage (high ionization potential, especially Helium)
- most relevant process for noble gas is nuclear transmutation ٠
- most studies done for wire chambers, where main damage occurs in avalanches \rightarrow should really be safe!

"Typical Cherenkov media like gases or quartz are sufficiently radiation hard to withstand the flux of 10⁷ electrons passing through the detector per second."

https://arxiv.org/pdf/1011.6314.pdf

³ Design and Construction of a Cherenkov Detector for Compton Polarimetry at the ILC

- Christoph Bartels^{1,2}, Joachim Ebert², Anthony Hartin¹, Christian Helebrant¹, Daniela Käfer¹, and Jenny List¹

"Only a limited choice of aging resistant gases can be successfully used in the high intensity experiments: noble gases, CF4, CO2, O2, H2O."

https://arxiv.org/pdf/physics/0403055.pdf

RADIATION DAMAGE AND LONG-TERM AGING IN GAS DETECTORS¹

MAXIM TITOV

Institute of Physics, Albert-Ludwigs University of Freiburg, Hermann-Herder Str. 3, Freiburg, D79104, Germany and

1

Radiation tolerance - Si PMs

- · Si PMs are less radiation hard than gaseous PMT
- · electrons: both bulk and surface damage
- found paper on Si PMT irradiation with 14MeV electrons

https://doi.org/10.1016/j.nima.2009.01.176 Noise and radiation damage in silicon photomultipliers exposed to electromagnetic and hadronic radiation

S. Sánchez Majos, P. Achenbach A ⊠, C. Ayerbe Gayoso, J.C. Bernauer, R. Böhm, M.O. Distler, M. Gómez Rodríguez de la Paz, H. Merkel, U. Müller, L. Nungesser, J. Pochodzalla, B.S. Schlimme, Th. Walcher, M. Weinriefer, C.J. Yoon

Our PMTs sit quite a bit away from the main line \rightarrow check dose levels in MC!

Probably need to put shielding around!

Summary

The Helium issue & SiPMTs:

- Helium Cerenkov medium in connection with gaseous PMT problematic: Helium diffusion through window breaks PMT also difficult wrt gas tightness
- alternative: Argon (higher refractive index)
- Silicon PMTs (don't have the helium problem, also some other advantages)
- don't need to change our channel dimension in x, but in y: 9x9mm (Brems) and 1x1 (Compton)
- gain is ~10⁵-10⁶, cannot reduce indefinitely (break-down)
- need additional measures to reduce light yield
 - → Neutral density filter T=0.1%
 - → possible to obtain same rate reduction as for measures before

Radiation tolerance:

- · Gas volume (noble gas) should be insensitive to radiation, also can be exchanged
- check radiation levels at the site where PMTs sit → shielding needed also to collimate beam
- it's difficult to put a number to this...