Results Chapter: Compton Edges

Ruth Jacobs

LUXE technical meeting 15th July 2020

Strategy

Energy [GeV]

ξ

Fastsim

from Sasha's slides

- parametrization of the magnetic field using formula for $rac{(x)}$, x(r)
- encapsulated read-in Tonys of MC (*.out files, *.stdhep files can be added), based on Sasha's code in lcpolmc
- simple detector parametrization (position, span, photodetector)
- somehow now getting similar to lcpolmc, but no more dependence on ancient fortran-style random generators
- code here: https://stash.desy.de/projects/BREM/repos/fastsimsuite/browse

Acceptance x Efficiency & Resolution

- acceptance: driven by span of the detector
- efficiency: photodetector quantum efficiency (λ -dependent)
 - channel reflectivity
 - filter transmission

 $\kappa = \int_{\lambda}^{\lambda} \max_{\substack{QE(\lambda) \\ \text{min}}} QE(\lambda) \cdot \epsilon_{\text{refl}} \cdot \epsilon_{\text{filter}}$

• resolution: driven by segmentation of the detector

Edge Finding?

Differentiation Prescription

- get electron x distribution
- calculate slope bin-by-bin (average over (i,i-1) and (i,i+1)

- find the bin with minimum slope
 → edge
- in reality need to define a window where to look for the first edge
- for high xi this gets difficult, as you get closer to the beam

Statistical Uncertainty

- Statistical: "On average, a primary electron leaves 8 Cerenkov photons"
 → Poissonian errors
- Toy approach: vary count rates in pseudo-experiments, rederive edges

Systematic Uncertainties

- LASER intensity
 - assume $1/sqrt(1+\xi^2)$ behaviour
- Misalignment
 - few percent effect, neglect
- Non-linearities (photo-detector, readout electronics):
 - has been measured for prototype setup (thesis C. Helebrandt
 - few percent effect
 - test for SiPMs!
- Backgrounds: need to understand
- something I forgot?

10% LASER uncertainty \rightarrow 20% uncertainty on edge position at low ξ