Associated Higgs Production with Bottom Quarks at Hadron Colliders

Michael Krämer (RWTH Aachen)

Kickoff Meeting of the working group on Higgs and heavy quarks Wuppertal 1.-2.3. 2010

Higgs production at hadron colliders through heavy quarks

inclusive

heavy-quark associated

Heavy quarks are special because

- they couple strongly to Higgs
- they are perturbative: $m_Q \gg \Lambda_{\rm QCD}$

At leading order

At leading order

At leading order

Summation of $ln(M_H/M_Q)$ terms by using heavy quark PDFs [Collins, Olness, Tung; Barnett, Haber, Soper; Dicus, Willenbrock,...]

4-flavour scheme

+ exact $g \rightarrow b\bar{b}$ splitting & mass effects - no summation of $\ln(M_H/M_b)$ terms

5-flavour scheme

- + summation of $\ln(M_H/M_b)$ terms
- LL approximation to $g \rightarrow b \bar{b}$ splitting

4-flavour scheme

+ exact $g \rightarrow b\bar{b}$ splitting & mass effects - no summation of $\ln(M_H/M_b)$ terms

The 4- and 5-flavour schemes

- are both theoretically consistent & well-defined
- represent different ways of ordering perturbation theory
- should agree at sufficiently high order
- do not match exactly at finite order

5-flavour scheme

- + summation of $\ln(M_H/M_b)$ terms
- LL approximation to $g \rightarrow b \bar{b}$ splitting

Comparison at leading order

Comparison at leading order

Comparison at leading order

- \rightarrow strong scale dependence
- $ightarrow \, \sigma(bar{b}
 ightarrow {\it H}) \gg \sigma(gg
 ightarrow bar{b}{\it H})$ at $\mu = M_H$
- \rightarrow discrepancy reduced at $\mu_F = M_H/4$ [Harlander, Kilgore; see also Spira; Maltoni, Sullivan, Willenbrock; Boos, Plehn]

NNLO 5FS calculation

where \otimes corresponds to α_s^1 contribution to the distribution of heavy quarks in an on-mass shell gluon:

$$\tilde{b}(x,\mu) = \frac{\alpha_s(\mu)}{2\pi} \ln\left(\frac{\mu^2}{m_Q^2}\right) \times \int_x^1 \frac{d\xi}{\xi} P_{qg}^{(1)}\left(\frac{x}{\xi}\right) g(\xi,\mu) \,.$$

determine factorization scale from collinear region where $d\sigma/dt \sim 1/t$

[Maltoni, McElmurry, Willenbrock]

 $\begin{array}{l} \rightarrow \ \mu_F \approx \ m_H/4 \ @ \ m_H \approx 100 \ {\rm GeV} \\ \mu_F \approx \ m_H/6 \ @ \ m_H \approx 500 \ {\rm GeV} \ {\rm (Tevatron)} \end{array}$

4FS

 NLO-QCD: Dittmaier, MK, Spira, PRD 70 (2004); Dawson, Jackson, Reina, Wackeroth, PRD 69 (2004), PRL 94 (2005)

5FS

 bb → h: NLO QCD: Dicus, Stelzer, Sullivan, Willenbrock, PRD 59 (1999); Balazs, He, Yuan, PRD 60 (1999); NNLO-QCD: Harlander, Kilgore, PRD 68 (2003); NLO SUSY QCD/EW: Dittmaier, MK, Mück, Schlüter, JHEP03 (2007); Hollik, Rauch (2007)

• $bg \rightarrow bh$:

NLO-QCD: Campbell, Ellis, Maltoni, Willenbrock, PRD67 (2003); NLO SUSY-QCD: Dawson, Jackson, PRD 77 (2007); NLO EW: Dawson, Jaiswal (2010)

NLO 4FS calculation

Inclusive Higgs plus bottom-quark production

Comparison of 4- and 5-flavour schemes at (N)NLO (SM Higgs, LHC)

Inclusive Higgs plus bottom-quark production

Comparison of 4- and 5-flavour schemes at (N)NLO (SM Higgs, LHC)

Comparison of 4- and 5-flavour schemes at NLO (SM Higgs, LHC)

Comparison of 4- and 5-flavour schemes at NLO (SM Higgs, LHC)

Comments & questions

- $\blacktriangleright\,$ 4FS calculation includes Higgs radiation off top loops $\approx -10\%$
- ► no consistent treatment of pdfs in previous comparisons (need pdf with four active flavours → gluon flux larger by 5-10%)
- \rightarrow should repeat comparison with consistent inputs (e.g. m_b) and up-to-date pdfs (MSTW 2008 4FS pdf)

Comments & questions

- \blacktriangleright 4FS calculation includes Higgs radiation off top loops $\approx -10\%$
- ► no consistent treatment of pdfs in previous comparisons (need pdf with four active flavours → gluon flux larger by 5-10%)
- \rightarrow should repeat comparison with consistent inputs (e.g. $m_b)$ and up-to-date pdfs (MSTW 2008 4FS pdf)
- no proper analytic understanding of differences between 4FS and 5FS calculations...
- $\rightarrow\,$ what is the best estimate for the inclusive cross section?

Comments & questions

- $\blacktriangleright\,$ 4FS calculation includes Higgs radiation off top loops $\approx -10\%$
- ► no consistent treatment of pdfs in previous comparisons (need pdf with four active flavours → gluon flux larger by 5-10%)
- \rightarrow should repeat comparison with consistent inputs (e.g. m_b) and up-to-date pdfs (MSTW 2008 4FS pdf)
- no proper analytic understanding of differences between 4FS and 5FS calculations...
- \rightarrow what is the best estimate for the inclusive cross section?

Maybe the Santander matching [Harlander, MK, Schumacher]:

 σ (best of all worlds) = weight $\times 5FS + (1 - weight) \times 4FS$

with weight = $\ln(m_H/37)/(1 + \ln(m_H/37))$

We should be able to do better really, but for the time being...

Backup

Inclusive Higgs plus bottom-quark production

Comparison of 4- and 5-flavour schemes at (N)NLO (SM Higgs, LHC)

Comparison of 4- and 5-flavour schemes at NLO (SM Higgs, LHC)

Comparison of 4- and 5-flavour schemes at NLO (SM Higgs, TeV)

Campbell, Ellis, Maltoni, Willenbrock; Dittmaier, MK, Spira; Dawson, Jackson, Reina, Wackeroth

Comparison of 4- and 5-flavour schemes at NLO (SM Higgs, LHC)

Campbell, Ellis, Maltoni, Willenbrock; Dittmaier, MK, Spira; Dawson, Jackson, Reina, Wackeroth

Comparison of 4- and 5-flavour schemes at NLO (SM Higgs, TeV)

Calculation only in 4FS (SM Higgs, LHC)

Dittmaier, MK, Spira; Dawson, Jackson, Reina, Wackeroth

Calculation only in 4FS (SM Higgs, TeV)

Dittmaier, MK, Spira; Dawson, Jackson, Reina, Wackeroth

Calculation only in 4FS (SM Higgs, LHC)

Calculation only in 4FS ((SM Higgs, TeV)

Dittmaier, MK, Spira; Dawson, Jackson, Reina, Wackeroth

