IV. dCache Workshop

Bergische Universitat Wuppertal
Wuppertal April 13, 2010

Info Service, GLUE And
Checksum Module

Christoph Anton Mitterer

christoph.anton.mitterer@Imu.de

[D)evsa

mailto:christoph.anton.mitterer@lmu.de

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

Contents

This presentation consists of the following chapters:
|. Info Service

Covers the information system provided by dCache.

1. GLUE
Gives an overview of the GLUE schema and describes how to generate the
corresponding data within dCache.

I1l. Checksum Module
Describes the data integrity functionalities provided by dCache’s Checksum
Module.

V. Examples And Exercises

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

l. Info Service

Christoph Anton Mitterer Slide 3

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

Overview

info is a service within dCache, which collects information about the respective
cluster and provides it as an Extensible Markup Language (XML) document.

It i1s primarily intended for external use and currently not internally utilised by
dCache itself.

The service is implemented by the info cell, which usually runs within the
infoDomain domain.

info may run on any node of the cluster, but usually there should not be more than
one instance of it.

The information is aggregated with a polling mechanism, where the info cell reads
regularly data from other dCache components.

Those components are organised in “classes”, for example global data, pools
selection configuration, pools and space reservations.

In order to prevent delays there is a minimum gap between querying objects of the
same class and another minimum gap between querying different classes.

Christoph Anton Mitterer Slide 4

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Info Service, GLUE And
Checksum Module

Overview

The following technical notes should be given:
= The effective polling frequency depends on the specific cluster.

= The classes correspond to the “main-elements” (for example summary, domains,
unitgroups, doors, pools, reservations, et cetera) of the XML document, but

they are not equal.

= Currently, the pool information is read from the PoolManager and not from the

pools themselves.

This may lead to discrepancies.

The info service provides also several commands within dCache’s administration

interface.

Christoph Anton Mitterer

Slide 5

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

UNIVERSITAT Checksum Module

MUNCHEN

Previous Information Systems And Future Developments

dCache also contains the now deprecated infoProvider service, which was further
used by an “infoProvider-based-infoProvider” to generate GLUE LDIF data.

It is only capable of providing very limited information and has been replaced by
the info service (and additionally the “info-based-infoProvider” which makes use

of it).

Future developments may include:
= [ncluding more information.
= I[mplementing a push mechanism (at least for some parts) in order to get a better

latency.

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

Data Interfaces

The info service's XML document is provided via the following interfaces:

= Raw TCP
The info cell itself exports the complete XML document on the loopback

network interface of the node where it runs via raw TCP on port 22112.
This is not accessible from remote hosts.

= HTTP
If the httpd service is available it exports the complete XML document on all

network interfaces of the node where it runs via HTTP on the configured port

under the path “/info/".
The HTTP port is specified by the httpdPort-configuration-parameter in dCache-home/config/
httpdoorSetup on the node where it runs. The default value for this is “2288".

It is also possible to request only a section of the XML document by appending
the name of the respective elements (for example summary, domains,
unitgroups, doors, pools, reservations, et cetera or even pools/pool-name,
pools/pool-name/queues, et cetera) to the path.

Christoph Anton Mitterer Slide 7

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

Structure And Semantics Of The XML Document

The XML document has a tree-structure with exactly one “root-element”, named
“dcache”, that contains several “main-elements” (for example summary, domains,
unitgroups, doors, pools, reservations, et cetera).

The XML namespace, which is set in the “root-element”, contains the version of the
document format and is currently defined to be “http://www.dcache.org/2008/
01/Info”.

The structure of each “main-element” is specific to the information it holds.

The following list gives an overview of the semantics of the current “main-
elements”:
= summary
Summary information (for example storage spaces, et cetera) about the overall
storage, link groups and space reservations.
= doors
Information (for example network values, protocol type and version, et cetera)
about every door.

Christoph Anton Mitterer Slide 8

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

A’I‘\ \)

Ay

Structure And Semantics Of The XML Document

= linkgroups
Information (for example ID, name, allowed access latencies and retention
policies, storage spaces, authorisations, existing reservations, et cetera) about
every link group.

=unitgroups
Information (for example included units, referencing links, et cetera) about every
unit group.

= domains
Information (for example included cells and information about them, routing
data, et cetera) about every domain.

= 1inks
Information (for example name, preferences, used units and unit groups, used
pools and pool groups, storage spaces, et cetera) about every link.

= nas (“Normalised Access Space”)
Information (sets of pools that are accessible by exactly the same storage units)
that is for example used for accounting and “storage authorisation discovery”.

Christoph Anton Mitterer Slide 9

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

Structure And Semantics Of The XML Document

" pools
Information (for example name, status, queue metrics, storage spaces,
referencing pool groups, et cetera) about every pool.

munits
Information (for example name, type, referencing unit groups, et cetera) about
every unit.

" reservations
Information (for example ID, description, status, access latency, retention policy,
storage spaces, authorisations, link group, etcetera) about every space
reservation.

= poolgroups
Information (for example name, referencing links, used pools, storage spaces,
et cetera) about every pool group.

Christoph Anton Mitterer Slide 10

UvalngI;llﬁsz_ Info
S
Ch ervice
ecksum ,\l/lSdLUE -
ule

MU
ONCHEN

gt :
gt
1l I

13 L.llln .
il mm,m i b
Hllllhl IIIIIHIIHI”,.
|.|||.|||||||n||l||, nlllml if
mn,mm,x..nml.!mlH‘n
i I ;

.Illnll
it
L
!

I GLUE

il
BE

Chri
istoph
An
ton Mitterer
e 11

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

Overview

The GLUE schema is an abstract modelling for grid entities and resources.

It is used within Grid Information Services (GIS) for several purposes including
(and most important) the discovery and selection of grid services.

GLUE also defines concrete representations for this data in several formats, for
example XML, LDAP and SQL.

GLUE is maintained by the Open Grid Forum’s GLUE Working Group.

Examples of programms that use GLUE data include: .
= Service Availability Monitoring
= File Transfer Service

m | CG Utilities
= miscellaneous ATLAS software Open Grld Forum

http://ogf.org/
http://forge.gridforum.org/sf/projects/glue-wg/

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

History And Versions

GLUE, which was originally an acronym for “Grid Laboratory Uniform
Environment”, started as collaborative effort between the EU’s DataTAG (Data
Transatlantic Grid) and the USA's iVDGL (International Virtual Data Grid

Laboratory) projects.

Currently, there are two major version branches:

m 1.X (includes the versions 1.0, 1.1, 1.2 and 1.3)
The original schema, with several additions and corrections, which is still
widespread among many grids including the LCG.

The most recent version 1.3 defines only a representation-format for LDAP.

m 2. X (includes the version 2.0)
A major redesign of GLUE under the aegis of the GLUE WG, that is incompatible
to the previous versions.

The current version 2.0 defines representation-formats for XML, SQL and LDAP.

This chapter only handles version 1.3.

Christoph Anton Mitterer Slide 13

Lubwic- Info Service, GLUE And wlliz

MAXIMILIANS-

IEVisy
universiTAT | Checksum Module Vit

MUNCHEN

Standards Literature

The following lists links to standards literature that might be of interest:

= GLUE 1.0 (historical)
http://www.cnaf.infn.it/~andreozzi/datatag/glue/CE/glueCE.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/SE/glueSE.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/CESE/glueCESE.htm

= GLUE 1.1 (historical)
http://www.cnaf.infn.it/~andreozzi/datatag/glue/v11/CE/index.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/v11/SE/index.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/v11/CESE/index.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/v11/NE/index.htm

= GLUE 1.2 (historical)
http://glueschema.forge.cnaf.infn.it/Spec/V12

= GLUE 1.3
http://glueschema.forge.cnaf.infn.it/Spec/V13

=GLUE 2.0
http://forge.gridforum.org/sf/go/projects.glue-wg/docman

= GLUE within LCG

https://twiki.cern.ch/twiki/pub/LCG/WLCGCommonComputingReadinessChallenges/
WLCG_GlueSchemaUsage-1.8.pdf

http://www.cnaf.infn.it/~andreozzi/datatag/glue/CE/glueCE.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/SE/glueSE.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/CESE/glueCESE.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/v11/CE/index.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/v11/SE/index.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/v11/CESE/index.htm
http://www.cnaf.infn.it/~andreozzi/datatag/glue/v11/NE/index.htm
http://glueschema.forge.cnaf.infn.it/Spec/V12
http://glueschema.forge.cnaf.infn.it/Spec/V13
http://forge.gridforum.org/sf/go/projects.glue-wg/docman
https://twiki.cern.ch/twiki/pub/LCG/WLCGCommonComputingReadinessChallenges/WLCG_GlueSchemaUsage-1.8.pdf
https://twiki.cern.ch/twiki/pub/LCG/WLCGCommonComputingReadinessChallenges/WLCG_GlueSchemaUsage-1.8.pdf

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Info Service, GLUE And
Checksum Module

Structure — Core Entities

The following UML-diagram shows the structure of core entities within GLUE:

Site
UniqueID: string
Name: string
Description: string
EmailContact: string
UserSupportContact: string
SysAdminContact: string
SecurityContact: string
Location: string
Latitude: real32
Longitude: real32
Web: uri
Sponsor*: string
OtherInfo*: string

*

Service
UniqueID: string
Name: string
Type: serviceType_ t
Version: string
Endpoint: uri
Status: serviceStatus_t
StatusInfo: string
WSDL: uri
Semantics: uri
StartTime: dateTime_xs_t
Owner*: string
AccessControlBase.Rule*:

ACBR_t

*

ServiceData
Key: string
Value: string

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Info Service, GLUE And
Checksum Module

Structure — Computing Resources

The following UML-diagram shows the structure of computing

GLUE:

is part of

"]

ComputingElement
UniqueID: string
Name: string
ImplementationName: CEImpl_t
ImplementationVersion: string
Capability*: string
InformationServiceURL: uri
Info.HostName: string
Info.JobManager: string
Info.ContactString*: string
Info.ApplicationDir: string
Info.DataDir: string
Info.DefaultSE: string
State.Status: cestatus_t
State.RunningJobs: int32
State.wWaitingJobs: int32
State.TotalJobs: int32
State.FreeJobSlots: int32
Policy.MaxTotalJobs: int32
Policy.MaxRunningJobs: int32
Policy.MaxWaitingJobs: int32
Policy.MaxSlotsPerJob: int32

Cluster
UniqueID: string

Name: string
TmpDir: string
WNTmpDir: string

y

Job
LocalID: string
GlobalD: string
LocalOwner: string
GlobalOwner: string
Status: jobStatus_t
SchedulerSpecific: string

+ | SubCluster

'

Host
OperatingSystemName: string
OperatingSystemVersion: string
ProcessorModel: string
ProcessorVersion: string
ProcessorClockSpeed: int32
ProcessorInstructionSet: string
NetworkAdapterInboundIP: boolean
NetworkAdapterOutboundIP: boolean
MainMemoryRAMSize: int32
MainMemoryVirtualSize: int32
ArchitecturePlatformType: string
BenchmarkSI00: int32

* E Software

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

Structure — Storage Resources

The following UML-diagram shows the structure of storage resources within GLUE:

manages

]

StorageArea
LocalID: string
Path: string

StorageElement
UniqueID: string

Name: strin Name: string
TotaiOnlinegize' int32 Architecture: SEArch_t ControlProcotol
. A InformationServiceURL: string LocallID: string
UsedOnlineSize: int32 - . ntrol . ;
. o ImplementationName: SEImpl_t contro * Endpoint: uri
FreeOnlineSize: int32 > . L - <
. T ImplementationVersion: string Type: controlProt_t
ReservedOnlineSize: int32 . : .
. S Status: cestatus_t Version: string
TotalNearlineSize: int32 TotalOnlineSize: int32 Capability*: strin
UsedNearlineSize: int32 ’ P y: 9

TotalNearlineSize: int32
UsedOnliseSize: int32
UsedNearlineSize: int32

FreeNearlineSize: int32
ReservedNearlineSize: int32
RetentionPolicy: retentionPol_t
AccesslLatency: accesslLat_t
Capability*: string
Policy.MinFileSize: int32
Policy.MaxFileSize: int32
Policy.MaxNumFiles: int32

AccessProtocol
LocalID: string
Endpoint: uri
Type: accessProt_t

Pol;cy.ngPlpDurgtlon: 1qt32 access * | version: string
Policy.FileLifeTime: string * I, i
. Capability*: string

State.UsedSpace: int32 MaxStreams: int32
State.AvailableSpace: int32 VOInfo '
- LocalID: string

Name: string

Path: string

Tag: string

AccessControlBase.Rule*: ACBR t

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

Generating GLUE Storage Resource Data Within dCache

dCache provides means to automatically generate GLUE version 1.3 storage
resource data in the LDAP representation-format.

The “info-based-infoProvider” (which must not be confused with the deprecated
infoProvider service) uses dynamic data from the info service as well as some
static information in order to generate the LDIF (LDAP Data Interchange Format)
output, which can for example be feed into a BDII-server to be subsequently used
within a GIS.

Technically, a configuration file (per default dCache-home/etc/glue-1.3.xml),
which also contains the static information mentioned above, is used by Xylophone
(a set of XSLT stylesheets for converting XML data into LDIF) in conjunction with
an XSLT processor (currently either Saxon or xsltproc) for the generation process.

The script dCache-home/libexec/infoProvider/info-based-infoProvider.sh
executes this process and writes the resulting LDIF data to the standard output.

It must be able to query the info service via HTTP.

Christoph Anton Mitterer Slide 18

http://xylophone.sourceforge.net/
http://saxon.sourceforge.net/
http://xmlsoft.org/XSLT/xsltproc2.html

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

Configuring The “info-based-infoProvider”

The “info-based-infoProvider” itself is configured via the following parameters in
dCache-home/config/dCacheSetup:
= httpHost
Specifies the domain name of the node where the info service runs.
= httpPort
Specifies the configured port on which the info service can be queried via HTTP.
= xylophoneConfigurationDir
Specifies the directory of the configuration file for Xylophone.
= xylophoneConfigurationFile
Specifies the name of the configuration file for Xylophone.
=" xsltProcessor
Specifies the XSLT processor to be used. Possible values are saxon for Saxon (the
recommended default) and xsltproc for xsltproc.

Christoph Anton Mitterer Slide 19

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

Configuring The Generation Process And Static Information

The configuration file for Xylophone controls the generation process itself and
specifies additionally required static information, that cannot be retrieved from the
info service.

A template for this configuration file is located at dCache-home/etc/glue-
1.3.xml.template.

It contains detailed instructions on its semantics and about how to set it up.

The template may change between different versions of dCache, including major
modifications.

Therefore it Is important to merge such changes into the actually used
configuration file!

Christoph Anton Mitterer Slide 20

LMU

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

UNIVERSITAT Checksum Module

MUNCHEN

Ill. Checksum Module

Christoph Anton Mitterer

Slide 21

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

UNIVERSITAT Checksum Module

MUNCHEN

Overview
The Checksum Module implements data integrity functionalities within dCache.

It provides automatic verification services on:

= incoming transfers from clients with submitted checksums (“ontransfer”),

m other writing, for example if the client did not submit checksums or in case of
pool-to-pool-transfers (“onwrite”) and

= restoring from HSM (“onrestore”).

Not yet implemented are automatic verification services on:
= reading (“onread”) and
= periodical checks.

Verification is also possible manually via:
m dCache’s administration interface.

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

UNIVERSITAT Checksum Module

MUNCHEN

Overview

Technically, the Checksum Module is part of each pool and the file checksums are
stored as meta-data within the file hierarchy provider (for example Chimera).

Each file can have multiple checksums from different algorithms stored.

Currently, the hash algorithms Adler-32 (which is the default), MD5 and MD4 are
supported for storing.

For verification however, dCache always uses Adler-32 and ignores others if there

are any.

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

Checksumming On Incoming Transfers

When a client writes data to the cluster the following happens regarding to
checksumming:

1. Calculating the checksum at client-side (the so called “client checksum”).
= DCAP/gsiDCAP
The checksum may be calculated before the transfers starts and submitted
with the “open-operation” or it may be calculated on-the-fly and submitted
with the “close-operation”.
Most clients use the later mode per default.
= GridFTP
In principle, checksumming is not supported by FTP.
However, some clients can use the SITE (“site parameters”) command to
specify a checksum, which is then calculated and submitted before the transfer
starts.
2. Calculating the checksum at server-side (the so called “transfer checksum”).
The server may calculate the checksum of the incoming data on-the-fly.

Christoph Anton Mitterer Slide 24

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

Checksumming On Incoming Transfers

3. Comparing the transfer checksum with the client checksum at server-side.
If a client checksum was submitted and if a transfer checksum was calculated,
compare them and result in an error if they differ.

4. If necessary, calculating the checksum at server-side (the so called “server file
checksum”).
If the server did not calculate the checksum in step 2, for example because
multiple streams were used, calculate a checksum of the data using the already
and completely stored file.

LUDWIG-

uowie- . | Info Service, GLUE And
I_Mu UNIVERS AT Checksum Module

Configuration

The Checksum Module is configured per pool using dCache’s administration
interface.

The following configuration commands are provided:
=csm set checksumtype algorithm (ignored)

Sets the used algorithm used for checksums to algorithm.

dCache ignores this internally and always uses Adler-32 for verification.
=csm set policy [-event=(onloff)]l [options]

Sets the policy of the Checksum Module, namely on which events checksumming
should occur (set to on) or not (set to off).

The following events exist and may be given as value for event:
montransfer

Checksumming on incoming transfers from clients with submitted checksums.
=onwrite

Checksumming on other writing, for example if the client did not submit
checksums or in case of pool-to-pool-transfers.

Christoph Anton Mitterer Slide 26

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

Configuration

=onrestore
Checksumming on restoring from HSM.
=onread
Checksumming on reading (before opening the file).
This is not yet implemented and silently ignored.
= frequently
Automatic periodical checksumming of all files on the pool.
This is not yet implemented and silently ignored.
mcsm set policy -enforcecrc=(on|loff)
Sets the policy of the Checksum Module, namely whether generation of
checksums is enforced (set to on) or not (set to off).
=csm 1info
Displays miscellaneous information, including the current policy and the status of
any verification processes.

Christoph Anton Mitterer Slide 27

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

Manual Verification Of Files

Manually checking the integrity of files is possible via dCache’s administration
interface, where the following commands are provided:
mcsm check (*|lpnfs-id)
Checks the file integrity of (if * was given) all files on the pool or a single file (if
its PNFS-ID was given).
mcsm show errors
Displays any errors that were found.

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Info Service, GLUE And
Checksum Module

IV. Examples And Exercises

Christoph Anton Mitterer

Slide 29

waamans- || Info Service, GLUE And . ‘%’;ﬁ*
I_Mu venen T || Checksum Module A,

Conventions And Assumptions

The following conventions are used:

= Lines starting with “$" are entered within a POSIX-sh-compatible shell.

= Lines starting with “#" are entered within a POSIX-sh-compatible shell, with the
effective user-1D and group-ID being 0 (“root-rights”).

= Lines starting with “(location) >" are entered within dCache’s administration
interface with Iocation as the current location.

= Standard input is written black, standard output grey and standard error red.

The following assumptions are made:

= A basic knowledge on dCache, its administration interface and dCache-related
clients exists.

= Chimera is used as file hierarchy provider.

= PostgreSQL is used as database management system.

Christoph Anton Mitterer Slide 30

http://postgresql.org/

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

universiTat (1 Checksum Module sl

1. Info Service

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

E1: Enabling The Info Service And Its Dependencies
The goal of this exercise is to enable the info service.

1. Enable the httpd service on one node of the cluster via one of the following ways:
= |f the NODE_TYPE-configuration-parameter in dCache-home/etc/node_config is
set to admin, the httpd service is automatically started on that node.
s Add “httpd” to the SERVICES-configuration-parameter in dCache-home/etc/
node_config.
2. Enable the info service on one node of the cluster via one of the following ways:
= |f the NODE_TYPE-configuration-parameter in dCache-home/etc/node_config is
set to admin, the info service Is automatically started on that node.
s Add “info” to the SERVICES-configuration-parameter in dCache-home/etc/
node_config.

3. Start the two services via:
dCache-home/bin/dcache start http
dCache-home/bin/dcache start info

4. Check whether the two services are actually running via:
$ dCache-home/bin/dcache status

Christoph Anton Mitterer Slide 32

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

UNIVERSITAT Checksum Module

MUNCHEN

E2: Read The XML Document Via Raw TCP

The goal of this exercise is to read the XML document via raw TCP.

The following must be done on the node where info service runs.

1. Read the complete XML document using netcat via:
$ nc localhost 22112

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

E3: Read The XML Document Via HTTP

The goal of this exercise is to read the XML document via HTTP.

The following can be done on any host that is able to connect via HTTP to the node
where the httpd service runs on the configured port.

It is assumed, that the node where the httpd service runs can be reached via the domain name
“httpd.dcache.example.org”. Further, the default value “2288" is assumed for the configured port.
1. Read the complete XML document using wget via:

$ wget --output-document=info0.xml http://localhost:2288/info/
$ wget --output-document=infol.xml http://httpd.dcache.example.org:2288/info/

2. Read single sections of the XML document using wget via:

B P B BB P

wget --output-document=info2.
wget --output-document=info3.
wget --output-document=info5.
wget --output-document=info6.
wget --output-document=info6.
wget --output-document=info6.

xml
xml
xml
xml
xml
xml

http:
http:

http:
http:
http:
http:

//1localhost
//1localhost
//1localhost
//1ocalhost

//localhost

:2288/info/summary
:2288/info/domains
:2288/1info/doors
:2288/info/pools/
//1localhost:

2288/1info/pools/pool-name

:2288/info/pools/pool-name/space

pool-name must be replaced with a valid pool name, for example “pool_1".

Christoph Anton Mitterer

Slide 34

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

E4: Learning The Provided Information

The goal of this exercise is to learn the provided information.

1. Read through the complete XML document and try to understand the semantics
of the different elements, attributes and values.

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

E5: The Info Cell Within dCache’s Administration Interface

The goal of this exercise is to explore some of the commands provided by the
info cell within dCache’s administration interface.

1. Within dCache’s administration interface, enter the info cell.
2. Try out the following commands:
=info [-al [-1]
Prints general information about the info cell itself.
mstate 1ls [pathl
Prints the current information collected by the info service.
Specifying a path allows a restriction of the output.
mdga (1s|(enableldisableltrigger) name)
This suite of commands allows to show (...1s), to enable (...enable name) or
disable (...disable name) as well as to trigger (...trigger name) data
gathering activities.

Christoph Anton Mitterer Slide 36

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

2. GLUE

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

E1: Setting Up glue-1.3.xml

The goal of this exercise is to set up the Xylophone configuration file glue-
1.3.xml, which controls the generation process and specifies additionally required
static information.

1. Merge the most recent version of the configuration file template dCache-home/
etc/glue-1.3.xml.template into the actual configuration file dCache-home/
etc/glue-1.3.xml.

If the later does not yet exist, simply copy the template.

2. If a non-default location was used for the configuration file, set the parameters
xylophoneConfigurationDir and xylophoneConfigurationFile in dCache-
home/config/dCacheSetup accordingly.

3. Follow the instructions in the template file to configure all the required
information.

This step iIs heavily dependant on the specific site, particularly factors like
general site data, supported VOs and information about storage areas.

Christoph Anton Mitterer Slide 38

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

E2: Checking The LDIF Output

The goal of this exercise is to check the LDIF output generated by the “info-based-
infoProvider”.

1. Execute the script dCache-home/libexec/infoProvider/info-based-

infoProvider.sh and redirect its standard output into a temporary file via:
$ dCache-home/libexec/infoProvider/info-based-infoProvider.sh > /tmp/GLUE.1ldif

. Check whether any errors or warnings have been written to standard error.
Read the generated LDIF output and try to understand its structure and
semantics.

w N

Christoph Anton Mitterer Slide 39

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

E3: Control Which Access Protocols Are Published

The goal of this exercise is to control which access protocols are published and
which not.

The configuration file template dCache-home/etc/glue-1.3.xml.template is

configured to not publish information about the access protocols DCAP and xrootd
(“proofd”).

This is achieved with stanzas like the following:
<suppress test="dcap">

<lookup path="d:protocol/d:metric[@name="'family']"/>
</suppress>

In order to enable publishing simply comment the respective stanza like the
following:

<l--
<suppress test="dcap'">
<lookup path="d:protocol/d:metric[@name="'family']"/>
</suppress>
-->

1. Try out to enable the publishing of DCAP and xrootd (“proofd”) information.

Christoph Anton Mitterer Slide 40

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

E4: Decommissioning Of The Deprecated InfoProvider

The goal of this exercise is to decommission the deprecated InfoProvider, if it was
used.

1. Stop the infoProvider service via:
dCache-home/bin/dcache stop infoProvider

2. Remove “httpd” from the SERVICES-configuration-parameter in dCache-home/
etc/node_config.
3. If the Generic Information Provider (GIP) was used:
1. Remove the following files:
= /opt/glite/etc/gip/1ldif/1lcg-info-static-SE.1ldif
= /opt/glite/etc/gip/1ldif/1lcg-info-static-dSE.1ldif
= /opt/glite/etc/gip/plugin/infoDynamicSE-plugin-dcache
Depending on GIP’s version and configuration, its configuration directory might be located at a

different path (for example /opt/lcg/var/gip/).
In addition, the files might have different names or be located in different subdirectories.

2. Other files that are now obsolete might have been used with GIP and must be
deleted, too.

Christoph Anton Mitterer Slide 41

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

E4: Decommissioning Of The Deprecated InfoProvider

4. If the 3rd-party “Space Token InfoProvider” was used:
1. Remove any symbolic links within GIP’s configuration directories to one of the
following files of the “Space Token InfoProvider”:
= info_provider.py

= token_info_provider.py
The links are typically found in /opt/glite/etc/gip/provider/.

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

E5: Publishing The “info-based-infoProvider™’s LDIF Output
The goal of this exercise is to publish the “info-based-infoProvider™’s LDIF output.

If the Generic Information Provider (GIP) is used:
1. Create a symbolic link to the script dCache-home/1libexec/infoProvider/info-

based-infoProvider.sh within the GIP's “provider-directory” for example via:
1n -s dCache-home/libexec/infoProvider/info-based-infoProvider.sh
/opt/glite/etc/gip/provider/

The “provider-directory” might be found at a different location (for example /opt/lcg/var/gip/
provider/).

It is also possible to let a BDIlI-server directly query the “info-based-infoProvider”
without using an intermediate GIP:
1. Add the “info-based-infoProvider” as a provider by adding the following line to

the configuration file bdii-update.conf:
ProviderA file://dCache-home/libexec/infoProvider/info-based-infoProvider.sh

It might be necessary to change the provider-1D A to the next free letter.
As always, dCache-home must be replaced with the absolute path to dCache,s for example Zopt/d-
cache.

Christoph Anton Mitterer Slide 43

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

E6: Checking The Validity Of The Published GLUE Data With GStat

The goal of this exercise is to check the validity of the GLUE data published by
production sites with GStat.

The following assumes the usage of GStat version 2.0.

1. Open GStat which is available as webservice at http://gstat-prod.cern.ch/.

2. Select “Site Views"”, then the grid or organisation the desired site belongs to and
then the site itself.

3. Now select a hostname in the frame “Information System Monitoring and
Validation”.

4. The frame “Site Resource Components” shows you several checks, for example
“check-se”, which checks the published storage resource data.

5. The frame “Viewing Testing Results or Statistics Graphs” shows the number of
warnings, errors and infos that were found.
Details are displayed when the item is expanded.

Christoph Anton Mitterer Slide 44

http://gstat-prod.cern.ch/

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

3. Checksum Module

uowie- . | Info Service, GLUE And
I_Mu UNIVERSITAT | Checksum Module

MUNCHEN

E1: Preparations
The goal of this exercise is to make preparations for the following exercises.

This and the following exercises operate on one given pool, which is named
poolil_1 here. Adapt the name as required.

1. Verify that checksum calculation is enabled for at least the “onwrite”-event via:
(pooli_1)> csm info

on write : true

If it is not, enable it via:
(pooll_1)> csm set policy -onwrite=on

2. Some test files (at least one) will be required on pooli_1. Upload a few files to
the dCache cluster, for example with dccp.

If more than one pool is used, dCache may likely spread the files over them. This
can however be prevented, for example by setting the other pools to read only.

Christoph Anton Mitterer Slide 46

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

E1: Preparations

3. Determine the “pool-directory” of pool1_1 on the node where it runs via:
dCache-home/bin/dcache pool 1s
Pool Domain LFS Size Free Path

bboll_l poollDomain precious 1000 500 /srv/dcache/pooll/

Here, the “pool-directory” is “/srv/dcache/pooll”.

4. Note, that a “pool-directory” contains about the following files and directories:
pool-directory/

Contains all data and files the pool consists of.

—controls/

Contains two “control-files” for each actual file in the “data-directory” with
meta-data about it.

—data/

Contains all the actual files from the pool, each named after its PNFS-ID.
—setup

Contains all settings (for example size, queues, et cetera) of the pool.

Christoph Anton Mitterer Slide 47

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

E1: Preparations

5. dCache defines the following “checksum-types”:
=1: Adler-32
m2: MD5

=3: MD4
They are used in several places including dCache’s administration interface and
Its databases.

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

E2: Reading The Stored Checksum Values Of Files

The goal of this exercise is to read the stored checksum values of files.

1. Select a file on pool1_1 and determine its PNFS-ID.
Here we assume the PNFS-pathname /pnfs/example.org/data/test-file and
the PNFS-ID OOOOE316BE29EAA64AF3940E92E636129CD0.

2. Read the stored checksums of the file directly from the chimera database via the
following SQL-query:

SELECT itype,isum FROM t_inodes_checksum WHERE
ipnfsid='0OOOOE316BE29EAA64AF3940E92E636129CD0O" ;

itype specifies the respective “checksum-type”.

When using the psql-client, this can be done for example via:
psql --username postgres --dbname chimera --command "SELECT itype,isum FROM
t_inodes_checksum WHERE ipnfsid='OOOOE316BE29EAA64AF3940E92E636129CDO" ;"

3. Read the stored checksums of the file in dCache’s administration interface via:
(PnfsManager) > get file checksum OOOOE316BE29EAA64AF3940E92E636129CDO 1
(PnfsManager) > get file checksum OOOOE316BE29EAA64AF3940E92E636129CDO 2
(PnfsManager) > get file checksum OOOOE316BE29EAA64AF3940E92E636129CDO 3

The last argument specifies the “checksum-type” to be queried.

Christoph Anton Mitterer Slide 49

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Info Service, GLUE And
Checksum Module

E3: Verifying The Integrity Of Files

The goal of this exercise is to verify the integrity of files.

1. Select a file on pool1_1 and determine its PNFS-ID.

Here we assume the PNFS-pathname /pnfs/example.org/data/test-file and

the PNFS-ID 000OE316BE29EAA64AF3940E92E636129CD0.

2. Trigger the checksum verification via:

(pooli_1) > csm check OOOOE316BE29EAAG64AF3940E92E636129CDO

Only the stored Adler-32 checksums are validated.
3. Wait until the verification process has already finished, which can be checked

via:
(pooll1_1) > csm info

If it has, the SingeScan-status is Idle, if not it is Active.

4. Display any errors that were found via:
(pooll_1) > csm show errors

5. Optionally, verify all files on the pool via:
(pooli1_1) > csm check *

Repeat steps 3 and 4.

The process status of the full scan is given by FullScan-status.

Christoph Anton Mitterer

Slide 50

LMU waamans- || Info Service, GLUE And
veren T || Checksum Module

E4: Simulating Corrupted Files

The goal of this exercise is to simulate corrupted files and check whether
verifcation errors occur.

1. Select a file on pool1_1 and determine its PNFS-ID.
Here we assume the PNFS-pathname /pnfs/example.org/data/test-file and
the PNFS-ID OOOOE316BE29EAA64AF3940E92E636129CD0.

The file is physically located on the node that runs pooli_1 at the pathname
pool-directory/data/OOOOE316BE29EAAG64AF3940E92E636129CDO, where
pool-directory is the “pool-directory” as described in exercise 1.

2. Corrupt the file, for example by overwriting it with a new file (optionally, of the

same size) filled with random data via:

pathname="pool-directory/data/OO0OE316BE29EAA64AF3940E92E636129CDO"
size="$(stat --format=%s "${pathname}")"

dd if=/dev/urandom of="${pathname}" bs=1 count="${size}"

3. Repeat steps 2 to 4 from exercise 3, for the file selected in step 1.

Christoph Anton Mitterer Slide 51

LUDWIG- Info Service, GLUE And

MAXIMILIANS-

RS AT Checksum Module

Acknowledgements

The following people contributed to create this presentation (given in
alphabetical order):

m Fuhrmann, Patrick

= Millar, Paul

= Mkrtchyan, Tigran

= Mol, Xavier

waomuans. || INfo Service, GLUE And
vonenen 1) Checksum Module

Finis coronat opus.

