DGK Jahrestagung 2021

Contribution ID: 24

Type: Oral contribution

The Lanthanoid Oxoantimonate(III) Bromides LnSb₂O₄Br (Ln = Eu –Tb): Synthesis, Crystal Structure and Luminescence

Monday 15 March 2021 15:25 (20 minutes)

Pale yellow crystals of $LnSb_2O_4Br$ (Ln = Eu - Tb) were synthesized via high temperature solid-state reactions from antimony sesquioxide, the respective lanthanoid sesquioxides and tribromides. Single-crystal X-ray diffraction studies revealed a layered structure in the monoclinic space group $P2_1/c$. In contrast to hitherto reported quaternary lanthanoid(III) halide oxoantimonates(III) [1], in $LnSb_2O_4Br$ the lanthanoid(III) cations are exclusively coordinated by oxygen atoms in the shape of square hemiprisms. These $[LnO_8]^{13-}$ polyhedra form layers parallel to the (100) plane by sharing common edges as shown in Figure 1. All antimony(III) cations are coordinated by three oxygen atoms forming ψ^1 -tetrahedral [SbO₃]³⁻ units, which have oxygen atoms in common building up meandering strands along [001] (Figure 2) according to $1D-\{[SbO_{2/2}^vO_{1/1}^t]^-\}$ (v = vertex-sharing, t = terminal). The bromide anions are located between two layers of these parallel running oxoantimonate (III) strands and have no bonding contacts with the Ln^{3+} cations. Since Sb^{3+} is known to be an efficient sensitizer for Ln^{3+} emission, photoluminescence studies were carried out to characterize the optical properties and assess their suitability as light phosphors. Indeed, for both, GdSb₂O₄Br and TbSb₂O₄Br doped with about 1.0 –1.5 at-% Eu³⁺ efficient sensitization of the Eu³⁺ emission could be detected. The resulting luminescence properties of both doped and undoped GdSb₂O₄Br and TbSb₂O₄Br are summarized in Figure 3. For TbSb₂O₄Br, in addition, a remarkably high energy transfer from Tb^{3+} to Eu³⁺ could be detected that leads to a substantially increased Eu³⁺ emission intensity, rendering it an efficient red light emitting material [2].

References

[1] F. C. Goerigk, Th. Schleid, Z. Anorg. Allg. Chem. 2019, 645, 1079-1084.

[2] F. C. Goerigk, V. Paterlini, K. V. Dorn, A.-V. Mudring, Th. Schleid, Crystals 2020, 10, 1089–1111.

Primary author: Mr GOERIGK, Felix Christian (University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart)

Co-authors: Prof. SCHLEID, Thomas (University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart); Dr PATERLINI, Veronica (Stockholm University); Prof. MUDRING, Anja-Verena (Stockholm University)

Presenter: Mr GOERIGK, Felix Christian (University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart)

Session Classification: Inorganic crystal structures

Track Classification: Inorganic crystal structures