Quantum Computing Applications: Opportunities at DESY and beyond

Karl Jansen

- Introduction
- Variational quantum simulations
- Examples:
 - flight gate assignment
 - Heisenberg model
- Opportunities

Problem description by Hamiltonian

- Consider two classes of problems
- Systems very hard for or not accessible to classical computers, e.g.
 - topological terms
 - non-zero quark density
 - Hubbard model away from half filling
 - real time evolutions
- Classical optimization problems \rightarrow quantum supremacy
 - flight to gate assignment
 - particle track reconstruction
 - air shower
 - traffic, etc.

Hamiltonian for the Quantum Computer

• Hamiltonian of a physical system is expressed in terms of Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Hamiltonian is direct product of Pauli matrices \Rightarrow obtain a $2^N \otimes 2^N$ matrix
- general goal: find ground and excited states and corresponding wave functions
- problem scales exponentially: how can we do this?
- Variational Quantum Simulation (VQS) (alternative: imaginary time evolution)

Finding ground state: Variational Quantum Simulation

- start with some initial state $|\Psi_{
 m init}
 angle$
- apply succesive gate operations \equiv unitary operations $e^{iS\theta}$
- examples for S: Pauli matrices σ_x , σ_y , σ_z , parametric CNOT

$$|\Psi(\vec{\theta})\rangle = e^{iS_{(n)}\theta_n}\dots e^{iS_{(1)}\theta_1}|\psi_{\text{init}}\rangle$$

• with $R_j := e^{iS_{(j)}\theta_j}$ cost function evaluated on quantum computer

$$C(\vec{\theta}) := \left\langle \psi_{\text{init}} \left| \left(\prod_{j=1}^{n} R_j \right)^{\dagger} H \prod_{j=1}^{n} R_j \right| \psi_{\text{init}} \right\rangle$$

- goal: minimize $C(\vec{\theta})$ over the angles $\vec{\theta}$ \rightarrow obtain minimal energy, i.e. ground state
- minimization performed classically (hybrid classical-quantum approach)

 — also possible on quantum computer itself

Example: only qubit rotations

unitary rotation with angle θ

Adding entanglement

$\Psi^1_{\rm ini}:$ $\Psi_{\mathrm{fin}}^1(\theta_1^1,\theta_1^2)$ $e^{i\theta_1^2\sigma_x}$ $e^{i\theta_1^1\sigma_x}$ $e^{i heta_2^2\sigma_x}$ $\Psi_{\rm fin}^2(\theta_2^1,\theta_2^2)$ $\Psi_{\rm ini}^2:$ 2 $e^{i\theta_2^1\sigma_x}$ $\Psi_{\rm ini}^3$: $\Psi_{\rm fin}^3(\theta_3^1,\theta_3^2)$ 3 $e^{i\theta_3^1\sigma_x}$ $e^{i\theta_3^2\sigma_x}$ $\Psi_{\rm ini}^4$: $\Psi_{\rm fin}^4(\theta_4^1,\theta_4^2)$ $e^{i\theta_4^2\sigma_x}$ $e^{i\theta_4^1\sigma_x}$ 4 final w.f. initial w.f. layer

Adding entanglement

- (k) qubit k
- $e^{i\theta\sigma_x}$
- unitary rotation with angle θ
- entanglement gate

Variational quantum simulation

- evaluate cost function $\langle \Psi(\vec{\theta)}|H|\Psi(\vec{\theta})\rangle$ on quantum device

• optimize over parameters $\vec{\theta}$ on classical computer \rightarrow give back new set of $\vec{\theta}$

Classical optimization problem: flight gate assignment

• Find shortest path between two connecting flights

 $x_{i\alpha} = \left\{ \begin{array}{ll} 1, & \text{if flight } i \in F \text{ is assigned to gate } \alpha \in G \\ 0, & \text{otherwise} \end{array} \right.$

 $x \in \{0,1\}^{F \otimes G} \to x$ binary variable $\to x \in \{-1,1\}^{F \otimes G}$

eigenstate of third Pauli matrix σ_z

$$H = \sum_{j=1}^{n} Q_{jj} \sigma_j^z + \sum_{\substack{j,k=1\\j < k}}^{n} Q_{jk} \sigma_j^z \otimes \sigma_k^z$$

- Q_{ij} coeffecients specific for a real given airport
- Goal: find ground state (shortest path)
- contraints:
 - every flight can only be assigned to a single gate
 - no aircraft can be at the same gate at the same time

VQS for FGA

(L. Funcke, T. Hartung, S. Kühn, T. Stollenwerk, P. Stornati, K.J.)

- use variational quantum simulation to find ground state
 - use 6 qubits on simulator
 - overlap: $\langle \Psi_{VQS} | \Psi_{\mathrm{exact}}
 angle$

- Remarks:
 - Hamiltonian is diagonal \rightarrow classical optimization
 - QC helpful through principles of superposition and entanglement?
 - the same Hamiltonian can be used in particle track reconstruction

A condensed matter physical model

• 1-dimensional Heisenberg model

 $H = \sum_{i=1}^{N} \beta \left[\sigma_x(i) \sigma_x(i+1) + \sigma_y(i) \sigma_y(i+1) + \sigma_z(i) \sigma_z(i+1) \right] + J \sigma_z(i)$

• Pauli matrices

$$\sigma^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad , \quad \sigma^{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad , \quad \sigma^{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- nearest neighbour interaction, tensor products
- Hamiltonian expressed in Pauli matrices \rightarrow suitable for quantum computer
- shows phase transitions, critical behaviour, non-trivial spectrum

 $H = \sum_{i=1}^{N} \beta \left[\sigma_x(i) \sigma_x(i+1) + \sigma_y(i) \sigma_y(i+1) + \sigma_z(i) \sigma_z(i+1) \right] + J \sigma_z(i)$

```
from pyquil.quil import Program

import pyquil.api as api

from pyquil.gates import *

qvm = api.QVMConnection() [hardware \rightarrow qvm = api.QPUConnection()]

import numpy as np

from pyquil.api import QVMConnection

from scipy.optimize import minimize

from grove.pyvqe.vqe import VQE

from pyquil.paulis import ID, sX, sY, sZ
```

```
def smallansatz(params):
return Program(RX(params[0], 0))
```

```
\begin{split} & \text{beta}{=}0.12578, J{=}1.87 \\ & \text{hamiltonian}{=}0 \\ & \text{for k in range(3):} \\ & \text{I}{=}(k{+}1)\%3 \\ & \text{hamiltonian} +{=}\text{beta}*(sX(k)*sX(l){+}sY(k)*sY(l) + sZ(k)*sZ(l)) + J*sZ(k) \\ & \text{print(hamiltonian)} \end{split}
```

initialangle = [0.0]

vqeinst = VQE(minimizer=minimize,minimizerkwargs='method': 'nelder-mead')

```
angle = 2.0
vqeinst.expectation(smallansatz([angle]), hamiltonian, None, qvm)
result = vqeinst.vqerun(smallansatz, hamiltonian, initialangle, None, qvm=qvm)
print(result)
```

General measurement error mitigation in NISQ area

(L. Funcke, T. Hartung, S. Kühn, P. Stornati, X. Wang, K.J., arXiv:2007.03663)

- generated state $|\Psi(ec{ heta})
 angle$ is a bit string |00110011100101
 angle
 - false measurement $|0\rangle \rightarrow |1\rangle$ with probability p_1 $|1\rangle \rightarrow |0\rangle$ with probability p_2
- setting (for simplicity) $p_1 = p_2 = p$
- measuring *s*-times: get k correct and s - kincorrect results distributed as

$$f(k,s,1-p) = \begin{pmatrix} s \\ k \end{pmatrix} (1-p)^k p^{s-k}$$

- recompute <u>exact</u> energy from noisy measurments
- can be generalized to arbitrary number of qubits
- will be devloped further in DASHH

example: transverse ising model

Opportunities

- theoretical particle physics
 - explore matter anti-matter asymmetry
 - CP-violation
 - early universe
 - heavy ion collisions
 - event and parton shower generation
 - raise your hand! 🖖
- experimental particle physics
 - particle track reconstruction (B. Heinemann, N. Styles)
 - jet cclustering (K. Borras, D. Krücker)
 - Higgs Physics (C. Issever)
 - Particle shower generation (D. Krücker, K. Borras)
 - raise your hand! 🖖

Opportunities in photon science

- group of N. Rohringer:
 - Hamiltonian for electrons in the Born-Oppenheimer approximation

$$\widehat{H} = -\frac{\hbar^2}{2m_e^2} \sum_i \Delta_i - e^2 \sum_{i,J} \frac{Z_J}{r_{iJ}} + e^2 \sum_{i>j} \frac{1}{r_{ij}}$$

- corresponding Schrödinger equation

$$i\hbar\frac{d}{dt}|\Psi(t)
angle = \widehat{H}|\Psi(t)
angle$$

- cast in <u>fermionic</u> stochastic differential equations
 - \rightarrow solve with quantum algorithms
- group of F. Kärtner
 - use wave guides for quantum simulations?
- group of R. Röhlsberger
 - explore potential of one-way-computing
- raise your hand

Some publications

- Zeta-regularized vacuum expectation values from quantum computing simulations
 T. Hartung and K.J., J.Math.Phys. 60 (2019) 9, 093504
- Measurement Error Mitigation in Quantum Computers Through Classical Bit-Flip Correction
 L. Funcke, T. Hartung, S.Kühn, P. Stornati, K.J., arxiv:2007.03663
- A resource efficient approach for quantum and classical simulations of gauge theories in particle physics
 J.F. Haase, L. Dellantonio, A.Celi, D.Paulson, A. Kan, K.J., C.A. Muschik, arxiv:2006.14160
- Towards simulating 2D effects in lattice gauge theories on a quantum computer
 D. Paulson, L. Dellantonio, J.F. Haase, A. Celi, A. Kan, A. Jena,
 C. Kokail, R. van Bijnen, K.J., P. Zoller, C. A. Muschik, arxiv:2008.09252
- Simulating Lattice Gauge Theories within Quantum Technologies M.C. Baüls et.al., Eur.Phys.J.D 74 (2020) 8, 165
- General quantum circuit analysis
 L. Funcke, T. Hartung, S.Kühn, P. Stornati, K.J., in preparation
- Flight gate assignment with variational quantum simulations
 L. Funcke, T. Hartung, S.Kühn, P. Stornati, T. Stollenwerk, K.J., in preparation

Succesful Innovation Pool Projects

- Laser Und XFEL Experiment (LUXE), Coordinator: B. Heinemann
 - use quantum algorithms for particle track reconstruction
- Accelerating Science with Artificial Intelligence and Machine Learning (ACCLAIM), Coordinator: F. Gaede
 - explore potential of QC for AI/ML

- develop hybrid quantum/classical variational algorithms

About to submit:

Helmholtz Innovationsschub Projekt für Quanten Computing und Sensing

Conclusion

- Quantum computing very active field
 - simulators run on local machines
 - hardware with small number of noisy qubits available
 - algorithms and methods are being developed:
 - \rightarrow variational quantum simulations
 - \rightarrow error mitigation and error correction
 - first benchmark models have been simulated
- New opportunities
 - explore potential of quantum computing
 - prepare for next generation of quantum computers
- Spin-off for chemistry, biology, material science, ...
- Quantum computing: a chance that we should take now

