Quantum Sensing in Particle and Astroparticle Physics at DESY

Quantum Sensors, Fundamental Physics and Plans for the Future

Steven Worm DESY Zeuthen and Humboldt-Universität zu Berlin

September 21, 2020

Outline

- Examples of Quantum Sensing from Astronomy and Astroparticle Physics
- Transition Edge Sensors (as bolometers, heterodyne receivers & at ALPS)
- Dark Matter with Quantum Sensors and ideas for Particle Physics
- Future plans, opportunities for collaboration

and Astroparticle Physics dyne receivers & at ALPS)

Quantum Instruments for Astronomy and Astrophysics

Ultra-low noise QS essential for modern Astronomy

- Astronomy/Astroparticle
 - Black hole imaging (microwave)
 - Polarization of CMB (mm wavelengths)
 - Galaxy formation in the early universe (far-infrared)
 - Star formation and extrasolar planets at (infrared)
 - Black-hole astrophysics (x-rays)

- **Gravitational Wave Physics**
 - Optical/laser interferometry (LIGO, Virgo)
 - Atomic interferometry (MAGIS, AION)
- Space Science
 - Solar planetary science
 - Ultra-sensitive astronomy
 - Earth observation

Atom Interferometry

Laser Interferometry

Event Horizon Telescope

Superconducting electronics for sensitivity at 230 GHz (1.3mm)

First image of a black hole, using the Event Horizon Telescope (Galaxy M87) - 2019

Event Horizon Telescope images of a black-hole powered jet (Quasar 3C 279) - 2020

Quantum Sensors in Astronomy: Millimeter and Sub-mm

Superconductor-Insulator-Superconductor (SIS) Receivers essential for sub-mm Astronomy

- Superconducting circuits allow phase coherent downconversion from THz to GHz frequencies
- Quantum devices (SIS receivers, mixers) based on coherent superconducting ground state
 - Operate very near quantum limit (noise temperature)
 - Gain on downconversion (non-classical)
 - Excellent response from 100 GHz to 1200 GHz
- Can't buy commercially: developed in close collaboration with condensed matter groups, labs

30+ years of observatories/instruments developed from this technology: ALMA, EVT, Herschel/HIFI

Quantum Sensors in Astronomy: TES Examples

SPICA (SAFARI)

- ESA-JAXA mission operating at Lagrange Point L2
- Plan: extragalactic point-source spectroscopy, birth/evolution of stars
- Cooled 3.5 m telescope (<8K) to eliminate thermal radiation from mirror
- 3500 superconducting Transition Edge sensors (TES) operating at 50 mK
- NEP (weakest detectable signal) goal of 2 x 10⁻¹⁹ WHz^{-1/2}
- Readout and multiplexer based on superconducting SQUIDs

BICEP2 / Keck Array / BICEP3

- Study Cosmic Microwave Background (B-modes)
- Study low-foreground region (from South Pole)
- Monolithic arrays of 2400 antenna-array coupled TES detectors
- Multicolor maps of 90–270 GHz, now adding 30-40 GHz
- Sensors fabricated at JPL, coupled to SQUID multiplexers from NIST

Quantum Sensors in Astroparticle: Next Steps

- Transition Edge Sensors (TES)

 - Exploit sharpness of superconducting phase transition, coupled to SQUID for readout Cameras with high spectral resolution employed from radio to X-ray (SPT, ATHENA, BICEP)
- Superconducting Tunnel Junctions (STJ)
 - Exploit quantum tunnelling in a junction of two superconductors
 - Direct tunnel current measurement (non-Heterodyne): could give simultaneous fast photon counting and spectroscopy in IR, Vis, UV bands
 - Prototypes tested with ~100 pixels and resolving power of ~10
- Microwave Kinetic Inductance Detectors (MKIDs)
 - Exploits change in phase of an inductor capacitor (LC) oscillator in thin superconductor
 - Read-noise free, easier multiplexing: arrays of ~10k under test
- Pixelated STJ or MKID for simultaneous imaging and spectrophotometry?
 - Goal of high pixel count (>1MP) and good resolving power (~1000)
 - Example use: Supernovae, Neutron star mergers, Pulsars
 - Exploit links to Quantum Computing? Improve existing technologies by about x1000?

Opportunity for joint development: superconducting QS tech can evolve fast

Superconducting Tunnel Junction

Array of 120 STJs from S-CAM3

MKID operating principle

[ESA, New Astronomy Reviews 87 (2019) 101526] 7

Particle Physics Example: Mass Scales for Dark Matter

Quantum Sensing needed for Light/Ultralight Dark Matter

Gravitational Lensing

TES Detector for ALPS II

- ALPS: Producing and detecting axion-like dark matter particles in a Light-shining-through-walls setup
- **Detection Challenge:**
 - Single 1064 nm photon detection
 - Extremely low rates (about 10⁻⁵ s⁻¹, i.e. 10⁻²⁴ W)
 - Extremely low dark counts required
- Setup at DESY: Transition Edge Sensor (TES), operating in the superconducting transition region

DESY. S. Worm

Dilution refrigerator (T≈20 mK) [•]BLUEFORS

SQUID electronics MAGNÍCON

physical research and instrumentation

DESY. S. Worm

DESY Experience with TES Detectors and Plans

- TES detectors commissioned to search for new particles
 - Experience with cryogenic TES setup & operation (first ADR, now DR)
 - Noise reduction challenging, but successful; resolution of $\approx 10\%$ for 1064 nm photons
 - Extremely low intrinsic dark counts; $< 7.7*10^{-6} \text{ s}^{-1}$ 1064 nm photon-like events (<1/day)
 - ALPS data taking at TES lab in HERA-West in 2022
- **R&D** and **Plans**
 - Second cryostat for TES R&D and ALPS II planned at HERA-North
 - Plans: develop chips with two sensors for veto capability (with NIST, PTB), low background TESs for other wavelengths, search for dark matter search based on TES dark counts

11

Example: Light Bosonic Dark Matter Couplings

- New boson fields for Dark Matter can change fixed, fundamental constants into dynamic variables

Search for Dark Matter by looking for spatial and temporal violations of α , μ

For example: α = fine structure constant, and μ = proton to electron mass ratio, no longer constants

Quantum Methods for Testing $\Delta \alpha / \alpha$

Atomic spectroscopy (clocks)

 $\delta(v_1/v_2) \propto \cos(m_{\varphi} t)$ 10⁻²³ eV < m_{φ} < 10⁻¹⁶ eV

Laser interferometry (cavities)

 $\delta \Phi \propto \delta(vL) \propto \cos(m_{\varphi}t)$ 10⁻²⁰ eV < m_{φ} < 10⁻¹⁵ eV

Atom interferometry

 $F(t) \propto p_{\varphi} \sin(m_{\varphi} t)$ $10^{-23} \,\mathrm{eV} < m_{\varphi} < 10^{-16} \,\mathrm{eV}$

Quantum Methods for Testing $\Delta \mu / \mu$

DESY. S. Worm

Co-magnetometry

$$\begin{split} \mathbf{B}_{\mathsf{ext}} & \delta(v_{L,1}/v_{L,2}) \propto \cos(m_a t) \\ & \text{or } \hat{\boldsymbol{\sigma}} \cdot \boldsymbol{p}_a \sin(m_a t) \end{split} \quad 10^{-23} \, \mathrm{eV} < m_a < 10^{-17} \, \mathrm{eV} \end{split}$$

Nuclear magnetic resonance ("sidebands") Signal amplitude [a.u] $B_{AC}(t)$ Frequency [Hz]

Nuclear magnetic resonance

Resonance: $2\mu B_{ext} \approx m_a$

 $10^{-14} \text{ eV} < m_a < 10^{-7} \text{ eV}$

Quantum Sensors and the Search for Dark Matter

Search for Dark Matter by looking for spatial and temporal violations of α , μ

- Example: Optical Atomic clocks as enabling technology
 - Electron transition frequency as timekeeping element, using high-frequency mode-locked laser for optical transition
 - Frequency uncertainties ranging from 10⁻¹⁷ to 10⁻¹⁸ seconds
 - Reaching precision of better than one second in the age of the universe
 - Ultra-sensitive, e.g. to Dark Matter variations in fine structure constant α
 - Clever choice of element/isotope and transition determines sensitivity

International Clock Comparison Data

- Constraints on energy scale, Λ_{α} of dark matter interactions
- Results for T = 0.9, 12, 45 hours
- Collaboration between PTB, SYRTE and NPL

[B.M. Roberts et al. arXiv:1907.02661] 16

Conclusion

Game-changing new technology for Astronomy, Particle and Astroparticle

- Quantum Sensing essential for modern Astroparticle/Astronomy

 - Mainstream applications incl. Transition Edge Sensors (as bolometers, heterodyne receivers) • New ideas coming up, with opportunities for collaboration
- Important new direction for Particle Physics, e.g. to extend search for Dark Matter
 - ALPS experiment leading the implementation at DESY
 - Lots of new, cross-disciplinary ideas for linking QS to DESY science
- Strong funding prospects world-wide for applications of quantum technology
 - USA announced ~\$1Billion for 12 new Quantum Research centers
 - UK funding Quantum Sensors for Fundamental Physics strong links to DESY

DESY. S. Worm

17