

Quantum Computing @CERN openlab

Sofia Vallecorsa – CERN openlab AI and Quantum Research

Alberto Di Meglio – CERN openlab Head

Federico Carminati – CERN openlab CIO

22/09/2020

OPENLAB JOINT R&D PROJECTS

CERN Quantum Technology Initiative

QC @ CERN openlab

- Quantum Generative Adversarial Networks for detector simulation
- Quantum Random Number Generators tests and integration
- Quantum Neural Networks for particle trajectory reconstruction
- Quantum Support Vector Machines for signal/background classification (Higgs, SUSY,..)
- Workload optimization via quantum Reinforcement Learning (D-Wave Quantum Annealer)
- Quantum Homomorphic Encryption

Collaboration with institutes (DESY, U. Aachen, U.Tokyo, U. Wisconsin, METU, P. U. Bucharest, U. Oviedo, ..) and companies (IBM, Intel, CQC, ...)

Quantum Machine Learning

QML introduces quantum algorithms as part of a larger implementation

Fully quantum or hybrid classical-quantum

Quantum or Classical input data

How do we represent learning rules?

Need **association rule** between NN activation patterns and pure quantum states

- How do we address data loading?
 - **Quantum state preparation**

Encode information into amplitudes of a quantum state

- Direct access through qRAM ?
- Advantage?

Representational power

Computational complexity? Sample Complexity?

QNN as variational circuits

Quantum Support Vector Machines for signal/background classification

Quantum Generative Adversarial Networks for detector simulation EPFL

WISCONSIN

Quantum Annealing for ML

First QA application to HEP

Published: 19 October 2017 Solving a Higgs optimization problem with quantum annealing for machine learning

Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar & Maria Spiropulu 🖂

Nature 550, 375–379(2017) | Cite this article

Quantum Annealing

Evolution of a quantum system to a low T Gibbs state

Setup with trivial H_0 and evolve to target H_p in the ground state

Adiabatic theorem : with a slow evolution of the system, the state stays in the ground state.

2017 D-wave 2X [™] 1098 qubits Operates at 15mK Anneals in 5-20 µs

> Problem Hamiltonian: H_P State minimizing the energy of the problem Hamiltonian

> > T=t_{final}

Total error over the training set:

Prof. Sau Lan Wu and her team

A Quantum Classifier

Quantum Support Vector Machines for Higgs classification

- 45 signal/background distinctive features
- Define a quantum **SVM**
 - Test different input encoding
 - Reduce number of input features using PCA :
 - 8,10,20 features (number of qubits)
 - Entanglement is used to encode relationships between features

Shallow variational classifier

Binary measurement

Simulate on **Qiskit**

CERN Popenlab

Quantum SVM

Quantum SVM for ttH($H \rightarrow \gamma \gamma$) classification

Comparison to BDT and classical SVM 100 training events, 100 test events, and 5 qubits 1000 iteration on IBM boeblingen

Running full training with quantum simulators requires **large computing resources**

CERN Openlab

Memory increases with qubit, training events and complexity

Quantum Generative Models

Classical Generative Models can replace Monte Carlo simulation

3DGAN: Generative Adversarial Networks prototype for calorimeter simulation Detector output interpreted as a 3D image.

Quantum Generative Models might have larger representational power

Quantum GAN investigations:

CERN Openlab

Down sample 3DGAN use case to **manageable number of pixels**

Use **compressed data representation** in quantum states.

Qubits or **Continuous Variables** Different **hybrid** classical-quantum combinations

3DGAN generator

https://doi.org/10.1051/epjconf/201921402010

Hybrid Classical-Quantum GAN

IBM qGAN can load probability distributions in quantum states

Simplify dataset: extract 1D energy profiles from 3DGAN images

- 2ⁿ classical pixels expressed by n qubits
- Probability of getting state | k = (Relative) Energy at pixel k

Train a hybrid classical-quantum GAN to generate few-pixels image

Classical Discriminator (pyTorch): 512 nodes + Leaky ReLU \rightarrow 216 nodes + Leaky ReLU \rightarrow single-node + sigmoid

Quantum Generator (Qiskit): 3 R_y layers

0.25

Simulation — Target

qGAN for single electron in a electromagnetic calorimeter

Low resolution 2D energy profile

Increase generator and discriminator depth (6 qubits – 36 pixels) Realistic 2D images Stable training losses

IBM qGAN is not a real generative model

It uses the adversarial training approach to **embed** image probability distribution in a quantum circuit

Need a way to sample single images

openlab

Extending the qGAN model

Su Yeon Chang

WORK IN PROGRESS

Collaboration with Cambridge Quantum Computing

Two-steps quantum generator to learn the average distribution and sample images from it

Ry variational form implemented using **giskit & t|ket**

Uniform parameter initialization

AMSGRAD optimizer with $Ir = 10^{-4}$, $Ir2 = 10^{-3}$

Classical discriminator (pyTorch) 4 nodes \rightarrow 512 nodes \rightarrow 256 nodes \rightarrow 1 node

Leaky ReLu between hidden layers + sigmoid

AMSGRAD optimizer + Gradient penalty for stability and convergence

Continuous Variable qGAN

Information encoded in continuous physics observables (ex : strength of EM field)

EPFL

15

Su Yeon Chang

• Information-carrying units: **qumodes** $|\psi\rangle = \exp(-iHt)|0\rangle = \int dx \,\psi(x)|x\rangle dx = \sum_{n=0}^{\infty} \langle n|\psi\rangle |n\rangle$

CV classifier

2

cvGAN preliminary results

WORK IN PROGRESS

Hybrid

Fully Quantum

Fully quantum approach doesn't fully converge

Use **non-linear activation** function (kerr gate) for the generator

Generator is probably not strong enough Try image clustering approach

Training process is time-consuming and limited by **computing power**

multiprocessing with 50 cores yields 160 min/epoch (quantum) 80 min/epoch (hybrid)

Cenk Tüysüz 20.04.2020 – Connecting The Dots Workshop

Charged particle tracking

Hep.TrkX project introduces Graph Neural Networks for particle trajectory reconstruction

Data as a graph of connected hits

Connect plausibly-related hits using geometric constraints Full event embedding requires **large graphs** (~10⁵ nodes)

HepTrkX GNN is a cascade of **Input**, **Edge** and **Node** Networks

Edge network outputs edge features, using the start and end nodes

Node network classifies nodes using all connected nodes fewatures on the previous and next layers

arxiv:1810.06111

First results at CHEP 2019 arxiv:2003.08126

GNN for particle tracking

Quantum: Gate Level implementation

A Quantum Classifier

Edge and Node NN as Tree Tensor Networks

Training Results of the QGNN

Comparison to Simple Classical Networks (2 epochs)

Training set: 1400 subgraphs, **Validation set**: 200 subgraphs, ADAM optimiser, binary cross entropy, Ir = 0.01, shots =1000. Hidden Dimension Size = 1. Classical Networks have x100 learning rate.

Simple experiments with Classical Networks show the potential for the Quantum Network. 🧃 🚅 openlab

Summary

CERN Quantum Technology Initiative established

- Assess the potential of QC in the time scale of the High Luminosity LHC runs and beyond
- Build skills for future programmes
- Provide a thematic HEP focus for international collaborations
- **CERN openlab** is investigating opportunities in QC and across QC and other relevant fields (AI, HPC)
 - Foster collaborations between scientists and industry
 - Major focus on education and skills development

Initial results are very exciting

Quantum Machine Learning particularly promising

Classical computational resources for simulation are an issue

Easy access to a full hardware+software stack can highly increase productivity

Thanks!

https://openlab.cern/quantum

23