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OPENLAB JOINT R&D PROJECTS

Data	
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(LHCb,	CMS,	
Dune,	IT-CF) Code	

modernizati
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LHC	Exp.,	
OPL)

Cloud	infra	
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Data	Storage	
(IT-ST,	IT-DB,	

EP-DT)

Networks	
(IT-CS)

Control	
Systems
(BE-ICS)

Data	
Analytics,	
Machine	
Learning	
(many)

High-bandwidth fabrics, 
accelerated platforms for 

data acquisition 

HPC, Cloud,
Quantum

Cloud technology, 
containers, scalability

Storage architectures, 
scalability, monitoring

Software Defined 
Networks, Security

Predictive/proactive 
maintenance and 

operations

Fast simulation, Data 
quality monitoring, 
anomaly detection, 

physics data reduction, 
benchmarking/scalability, 

systems biology and 
large-scale multi-

disciplinary platforms
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CERN Quantum Technology Initiative
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Joint	HEP	R&D	
Programme

CERN	
Management

QT	Initiative	
Management

Sensing,
Detectors	R&D

Computing &	
Engineering Communication

Simulation,
Information	
Processing

QT	Advisory	Board
(Member	States)

Academic	Programmes	/	Industrial	Collaborations /	Knowledge	Transfer

Strategy

Coordination

R&D

Capacity	building

Many	pilot	projects	already	started	as	part	of	the	CERN	openlab	quantum	programme	(https://openlab.cern/quantum)		
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QC @ CERN openlab

§ Quantum Generative Adversarial Networks for detector 
simulation

§ Quantum Random Number Generators tests and 
integration 

§ Quantum Neural Networks for particle trajectory 
reconstruction

§ Quantum Support Vector Machines for signal/background 
classification (Higgs, SUSY,..)

§ Workload optimization via quantum Reinforcement 
Learning (D-Wave Quantum Annealer)

§ Quantum Homomorphic Encryption
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Collaboration with institutes (DESY, U. Aachen, U.Tokyo, U. Wisconsin, METU, P. U. Bucharest, U. 
Oviedo, ..) and companies (IBM, Intel, CQC, ...)​

Simulation

Reconstruction

Classification
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Quantum Machine Learning
QML introduces quantum algorithms as part of a larger implementation

Fully quantum or hybrid classical-quantum
Quantum or Classical input data

How do we represent learning rules?
Need association rule between NN activation patterns and pure quantum 
states

How do we address data loading?
Quantum state preparation
Encode information into amplitudes of a quantum state
Direct access through qRAM ?

Advantage?
Representational power
Computational complexity? Sample Complexity? 5E.	Farhi,	H.	Neven,	arxiv1802.06002

QNN as variational circuits
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Examples
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Quantum Support Vector Machines for signal/background classification

Quantum Generative Adversarial Networks for detector simulation

Quantum Graph Neural Networks for particle trajectory reconstruction
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Quantum 
Annealing for ML 
First QA application to HEP 
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36 weak classifiers 
Signal
Background

https://www.nature.com/articles/nature24047

Quantum Annealing
Simulated Annealing
Classical DNN
Classical XGB

NOT A OPENLAB PROJECT
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Quantum Annealing
Evolution of a quantum system to a low T Gibbs 
state

Setup with trivial H0 and evolve to target Hp in 
the ground state
Adiabatic theorem : with a slow evolution of 
the system, the state stays in the ground state.

Weak classifiers hi

Total error over the training set:

Quadratic 
Unconstrained 
Binary 
Optimization

2017	D-wave	2X	TM
1098	qubits
Operates	at	15mK
Anneals	in	5-20	μs

𝐻 𝑡 = 𝐴 𝑡 𝐻% + 𝐵 𝑡 𝐻(
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45 signal/background distinctive features

Define a quantum SVM
Test different input  encoding

Reduce number of input features using PCA : 
8,10,20 features (number of qubits) 
Entanglement is used to encode relationships between features 

Shallow variational classifier 
Binary measurement

Simulate on Qiskit
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A Quantum Classifier
Quantum Support Vector Machines for Higgs classification

Support	Vectors

Maximize	margin

Prof. Sau Lan Wu and her team

Phys.	Lett.	B	784	(2018)	173	
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Comparison to BDT and classical SVM
100 training events, 100 test events, and 5 qubits 
1000 iteration on IBM boeblingen

Running full training with quantum 
simulators requires large 
computing resources

Memory increases with qubit, training 
events and complexity
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Quantum SVM for ttH(H → gg) classification
Quantum SVM

Prof. Sau Lan Wu and her team
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https://doi.org/10.1051/epjconf/2019214020103DGAN generator

Quantum Generative Models

Classical Generative Models can replace Monte 
Carlo simulation

3DGAN: Generative Adversarial 
Networks prototype for calorimeter simulation
Detector output interpreted as a 3D image.

Quantum Generative Models might have larger 
representational power
Quantum GAN investigations:

Down sample 3DGAN use case to manageable 
number of pixels
Use compressed data representation in 
quantum states.

Qubits or Continuous Variables
Different hybrid classical-quantum combinations

Real image 3DGAN output

Su Yeon Chang

11Calorimeter DepthCalorimeter Depth
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Hybrid Classical-Quantum GAN

Simplify dataset: extract 1D energy profiles from 3DGAN images
2n classical pixels expressed by n qubits
Probability of getting state | k⟩ = (Relative) Energy at pixel k

Train a hybrid classical-quantum GAN to generate few-pixels image
Classical Discriminator (pyTorch): 512 nodes + Leaky ReLU → 216 nodes + Leaky ReLU → single-node + 
sigmoid
Quantum Generator (Qiskit): 3 Ry layers
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https://doi.org/10.1038/s41534-019-0223-2

IBM qGAN can load probability distributions in quantum states
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Calorimeter Depth

Su Yeon Chang​
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qGAN for single electron in a 
electromagnetic calorimeter
Low resolution 2D energy profile
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Increase generator and discriminator depth (6 qubits – 36 pixels)
Realistic 2D images
Stable training losses

Real image

qGAN imageIBM qGAN is not a real generative 
model

It uses the adversarial training 
approach to embed image 
probability distribution in a quantum 
circuit

Need a way to sample single images

Su Yeon Chang​

Calorimeter Depth

Calorimeter Depth
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Mean 
Image

Extending the qGAN model

Two-steps quantum generator to learn the average distribution and sample images from it
Ry variational form implemented using qiskit & t|ket
Uniform parameter initialization
AMSGRAD optimizer with lr = 10-4, lr2 = 10-3

Classical discriminator (pyTorch) 4 nodes → 512 nodes → 256 nodes → 1 node
Leaky ReLu between hidden layers + sigmoid 
AMSGRAD optimizer + Gradient penalty for stability and convergence

Collaboration with Cambridge Quantum Computing WORK IN PROGRESS

Su Yeon Chang

14
Calorimeter Depth
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Continuous Variable  qGAN

Hybrid model : 

Fully Quantum model :

Su Yeon Chang
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Alternative concept based on optical systems 

§ Information encoded in continuous physics observables (ex : strength of EM field)
§ Information-carrying units: qumodes 𝜓 = exp −𝑖𝐻𝑡 0 = 	∫ 𝑑𝑥	𝜓 𝑥 𝑥 𝑑𝑥 = 	5 𝑛 𝜓 |𝑛⟩

8

9:%
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CV classifier
Test quantum discriminator network n=3 depth =3

16

Fock

Gaussian 

Compare 1D 
energy profile to flat 
distribution

StrawberryFields for network implementation. 
Pennylane for autodifferentiation

https://doi.org/10.1103/PhysRevLett.82.1784
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Fully QuantumHybrid

Fully quantum approach doesn't fully 
converge

Use non-linear activation function (kerr gate) 
for the generator
Generator is probably not strong enough

Try image clustering approach

Training process is time-consuming and 
limited by computing power

multiprocessing with 50 cores yields
160 min/epoch (quantum)
80 min/epoch (hybrid)

cvGAN preliminary results

17

Calorimeter DepthCalorimeter Depth

Real Fully quantum qGAN

WORK IN PROGRESS
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Charged particle tracking

Hep.TrkX project introduces Graph Neural
Networks for particle trajectory reconstruction

Data as a graph of connected hits
Connect plausibly-related hits using geometric constraints
Full event embedding requires large graphs ( ~105 nodes)

HepTrkX GNN is a cascade of Input, Edge and Node
Networks

Edge network outputs edge features, using the start and end
nodes
Node network classifies nodes using all connected nodes
fewatures on the previous and next layers

arxiv:1810.06111
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Cenk Tüysüz
20.04.2020 – Connecting The Dots Workshop
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GNN for particle tracking

HEP.TrkX GNN Scores:
Purity: 99.5%
Efficiency: 98.7%
Overall Accuracy: 99.5% with 0.5 threshold

Quantum: Gate Level implementation

InputNet Quantum
EdgeNet

Quantum
NodeNet

Quantum
EdgeNet

Quantum
NodeNet

Quantum
EdgeNet

First	results	at	CHEP	2019 arxiv:2003.08126

19



20

Edge and Node NN as Tree Tensor Networks
A Quantum Classifier

Node 1 (r1,∅1,z1) 

Node 0 (r0,∅0,z0) 
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Comparison to Simple Classical Networks (2 epochs)
Training Results of the QGNN

Simple experiments with Classical Networks show the potential for the Quantum Network.

Increasing Nhid.dim. , improves 
the performance

Increasing Nhid.dim. , improves 
the performance

Training set: 1400 subgraphs, Validation set: 200 subgraphs,
ADAM optimiser, binary cross entropy, lr = 0.01, shots =1000. Hidden Dimension Size = 1.
Classical Networks have x100 learning rate.
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CERN Quantum Technology Initiative established
Assess the potential of QC in the time scale of the High Luminosity LHC runs and 

beyond
Build skills for future programmes
Provide a thematic HEP focus for international collaborations

CERN openlab is investigating opportunities in QC and across QC and 
other relevant fields (AI, HPC)

Foster collaborations between scientists and industry
Major focus on education and skills development

Initial results are very exciting
Quantum Machine Learning particularly promising

Classical computational resources for simulation are an issue
Easy access to a full hardware+software stack can highly  increase productivity 

Summary
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Thanks!
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https://openlab.cern/quantum


