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Uncertainties in accelerator physics
Reliable & predictable simulations of the superconducting RF resonator :

• manufacturing uncertainties : ultrasonic bath, buffered chemical polishing, etc.
• roughness of the superconducting surfaces

• affect the material and geometrical parameters

Schematic view of a HZB-QPR [K20]
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Consequences of uncertainties : measurement
procedure

• specifically those associated with geometrical deviations of a cavity design

• various figures of merit : a) operating frequencies – f0(p), b) focus factor –
f1(p), c) homogeneity of the magnetic field distribution on the sample –f2(p),
d) penetration of the magnetic field into the coaxial gap – f3(p)
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Probabilistic density functions of selected figures of merit [PGZWHvR19]
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Impact of uncertainties onto optimization
Objective : robust optimization of electric devices under uncertainties

Graphical illustration of robust optimization [Wen Y. et al. 2011].
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Stochastic Maxwell’s Eigenproblem
Eigenpairs (E(θ), λ(p)):

−∇×
(

1
µr
∇× E(θ)

)
+ λ εr E(θ) = 0, in D,

n× E(θ) = 0, on ∂DP,

n×
(

1
µr
∇× E(θ)

)
= 0, on ∂DN

for θ := (x,p) ∈ D ×Π, ∂D = ∂DP ∪ ∂DN, Π ⊂ RQ - parameter space

E: phasor of electric field, λ = ω2

c2 : eigenfrequency, ω: angular frequency
c : speed of light, µr : relative magnetic permeability, εr : relative electric
permittivity
Discretization : finite element method

(tetrahedral mesh, piecewise linear functions)
26. June 2020 © 2020 UNIVERSITÄT ROSTOCK | FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 6 / 22



Parametrized model of QPR
A three-dimensional symmetric model (3D)
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• selected parameters : p(ξ) ∈ RQ , Q = 9
p := (p1, p2, p3, p4, p5, p5, p6, p7, p8, p9)> :=

(gap, rrods, hloop, rloop,wloop, dloop, rcoil , rsample)>

−→ treated as uncertain design parameters in our simulation
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UQ analysis : pseudo-spectral approach (I)
Stochastic variables (Ω,Σ, µ) : p(ξ) = (p1(ξ), . . . , pQ(ξ)) , p : Ω→ Π,

independent, Gaussian, uniform, beta, etc.

Polynomial Chaos Expansion : a finite second moment of f : [λ0, λend] :

f (λ,p(ξ))
.

=
N∑

i=0

vi (λ)φi (p(ξ))

Based on calculations of a model at each quadrature points p(1), . . . ,p(K) ∈ Π :

E [f (λ, p)] = v0(λ), Var [f (λ, p)] =
N∑

i=1

|vi (λ)|2

by using a multi-dimensional quadrature rule with weights w (1), . . . ,w (K) ∈ R :

vi (λ) := 〈f (λ, p) , φi (p)〉 .=
K∑

k=1

wk f
(
λ, p(k)

)
φi (p(k))
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UQ analysis : sensitivity analysis (II)

Local sensitivity :

∂f
∂pj

∣∣∣∣∣
pj =pj

=
N∑

i=0

vi
∂φi

∂pj

∂p
∂ξj

, j = 1, . . . ,Q.

Variance-based sensitivity :

Sj =
Vj

Var(f )
with Vj :=

∑
i∈Ij

|vi |2, j = 1, . . . ,Q,

Ij : sets Ij := {j ∈ N : φj(p) is not constant in pj}
Var(f ) : the total variance, 0 ≤ Sj ≤ 1 : upper and lower bounds
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UQ analysis of the QPR
Result for the variance-based sensitivity analysis
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Result of the global sensitivity analysis [PGZWvR20]
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Robust MO shape optimization
Random variables : ξ = (ξ1, ξ2, ξ3, ξ4, ξ5)

Random dependent functionals :

[f1(p), f2(p), f3(p)] :=

[
1

2U

∫
ΩS

‖H(p)‖2 dx,

∫
ΩS

‖H(p)‖2 dx

|ΩS| max
x∈ΩS

(‖H(p)‖2)
,

∫
ΩS

‖H(p)‖2 dx∫
ΩF

‖H(p)‖2 dx

]

Functionals for robust optimization :

inf
p∈RQ

[E(f1),E(f2),E(f3)]>

s.t.∇× (ν∇× E(p, ·))− λ(p) εE(p, ·) = 0,

pLq ≤ pq ≤ pUq , for q = 1, . . . ,Q

Approximation of probabilistic integrals : Stroud-3 formula (10 nodes)
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Parameters of stochastic simulation

Variations of geometrical parameters :
−→ modeled by Gauss distribution

Random variations of parameters :
−→ gap: p1 = p1(1 + δ1ξ1)
−→ rrod : p2 = p2(1 + δ2ξ2)
−→ hloop: p3 = p3(1 + δ2ξ3)
−→ rloop: p4 = p4(1 + δ2ξ4)
−→ wloop: p5 = p5(1 + δ2ξ5)

• independent normal random variables : ξ1, ξ2, ξ3, ξ4, ξ5

• the magnitude of perturbation : σq := δq · pq = 0.05 [mm]
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Robust MO Shape Optimization : Pareto front
VBS-MO shape optimization

To solve MO robust optimization problem :
−→ VBS-MO steepest descent method
−→ shape derivative approximated by element-wise product : S�∇f
−→ analytical expression for steepest descent direction [FS00,LR16]

Convergence of Pareto Front using VBS-based approach [PGZWvR20]
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Robust MO shape optimization: PDFs
focusing factor homogeneity factor
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PDFs of selected figures of merit calculated in CERN-, HZB-QPR and optimized configuration [PGZWvR20]
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Robust MO shape optimization
Probabilistic density functions for the frequency of the third operating mode
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Robust MO Shape Optimization : shapes of QPR
VBS-MO shape optimization

HZB conf. Sol. A Sol. BCERN conf.

Comparison between existing QPR designs and optimized ones [PGZWvR20]
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Robust MO Shape Optimization : summary
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Conclusions and further research
Conclusions :

−→ VBS robust MO shape optimization problem of
QPR under uncertainties

−→ optimized configuration of QPR allows for
increasing the focusing factor of the third mode by 50-57%
and 158-168% compared to the HZB and CERN designs,

−→ better resolution of the surface resistance in different freqi

−→ the dimensionless factor of freq3 is more than twice bigger
than for the HZB and CERN configuration

−→ it helps to decrease the measurement bias for the third mode
in HZB and CERN designs

Further research directions :

−→ electro-stress-heat coupled problem of QPR & its optimization
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Thank you for your attention
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