

Uncertainty Quantification for robust shape optimization of QPR

Piotr Putek¹, Shahnam Gorgi Zadeh¹, Ursula van Rienen^{1,2} Mare Wenskat^{3,4}

University of Rostock, Institute of General Electrical Engineering, 2 Department of Life, Light & Matter

³Universität Homburg, Institute of Experimental Physics ⁴Deutsches Elektronen-Synchrotron

Outline

Motivation

Reliable & predictable simulations of QPR Stochastic Forward Problem Parametrized model of QPR Pseudo-spectral Approach

Result for MO robust shape optimization of QPR Formulation of MO robust optimization

Parameters of stochastic simulation

Outline

Motivation

Reliable & predictable simulations of QPR Stochastic Forward Problem

Parametrized model of QPR Pseudo-spectral Approach

Result for MO robust shape optimization of QPR

Formulation of MO robust optimization Parameters of stochastic simulation

Outline

Motivation

Reliable & predictable simulations of QPR

Stochastic Forward Problem Parametrized model of QPR Pseudo-spectral Approach

Result for MO robust shape optimization of QPR

Formulation of MO robust optimization Parameters of stochastic simulation

Outline

Motivation

Reliable & predictable simulations of QPR

Stochastic Forward Problem Parametrized model of QPR Pseudo-spectral Approach

Result for MO robust shape optimization of QPR

Formulation of MO robust optimization Parameters of stochastic simulation

Rostock

Uncertainties in accelerator physics

Reliable & predictable simulations of the superconducting RF resonator :

- manufacturing uncertainties : ultrasonic bath, buffered chemical polishing, etc.
 - roughness of the superconducting surfaces
 - affect the material and geometrical parameters

Schematic view of a HZB-QPR [K20]

Rostock

Consequences of uncertainties : measurement procedure

- specifically those associated with geometrical deviations of a cavity design
- various figures of merit : a) operating frequencies $-f_0(\mathbf{p})$, b) focus factor $f_1(\mathbf{p})$, c) homogeneity of the magnetic field distribution on the sample $-f_2(\mathbf{p})$, d) penetration of the magnetic field into the coaxial gap – $f_3(\mathbf{p})$

Probabilistic density functions of selected figures of merit [PGZWHvR19]

Impact of uncertainties onto optimization

Objective : robust optimization of electric devices under uncertainties

Graphical illustration of robust optimization [Wen Y. et al. 2011].

Stochastic Maxwell's Eigenproblem

Eigenpairs ($\mathbf{E}(\theta), \lambda(\mathbf{p})$):

$$\begin{aligned} -\nabla \times \left(\frac{1}{\mu_r} \nabla \times \mathbf{E}(\theta)\right) + \lambda \,\epsilon_r \,\mathbf{E}(\theta) &= 0, & \text{in } D, \\ \mathbf{n} \times \mathbf{E}(\theta) &= 0, & \text{on } \partial D_{\mathrm{P}}, \\ \mathbf{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathbf{E}(\theta)\right) &= 0, & \text{on } \partial D_{\mathrm{N}} \end{aligned}$$

for $\theta := (\mathbf{x}, \mathbf{p}) \in D \times \Pi$, $\partial D = \partial D_{\mathrm{P}} \cup \partial D_{\mathrm{N}}$, $\Pi \subset \mathbb{R}^{Q}$ - parameter space **E**: phasor of electric field, $\lambda = \frac{\omega^{2}}{c^{2}}$: eigenfrequency, ω : angular frequency *c*: speed of light, μ_{r} : relative magnetic permeability, ϵ_{r} : relative electric permittivity

Discretization : finite element method

(tetrahedral mesh, piecewise linear functions)

Parametrized model of QPR

- selected parameters : $\mathbf{p}(\boldsymbol{\xi}) \in \mathbb{R}^Q, \, Q = 9$
 - $\begin{aligned} \mathbf{p} &:= (p_1, p_2, p_3, p_4, p_5, p_5, p_6, p_7, p_8, p_9)^\top := \\ & (gap, rrods, hloop, rloop, wloop, dloop, rcoil, rsample)^\top \end{aligned}$

 \longrightarrow treated as uncertain design parameters in our simulation

UQ analysis : pseudo-spectral approach (I) Stochastic variables (Ω, Σ, μ) : $\mathbf{p}(\boldsymbol{\xi}) = (p_1(\boldsymbol{\xi}), \dots, p_Q(\boldsymbol{\xi})), \mathbf{p} : \Omega \to \Pi$, independent. Gaussian, uniform, beta, etc.

Polynomial Chaos Expansion : a finite second moment of $f : [\lambda_0, \lambda_{end}]$:

$$f(\lambda, \mathbf{p}(\boldsymbol{\xi})) \doteq \sum_{i=0}^{N} v_i(\lambda) \phi_i(\mathbf{p}(\boldsymbol{\xi}))$$

Based on calculations of a model at each quadrature points $\mathbf{p}^{(1)}, \dots, \mathbf{p}^{(K)} \in \Pi$: $\mathbb{E}[f(\lambda, \mathbf{p})] = v_0(\lambda), \quad \text{Var}[f(\lambda, \mathbf{p})] = \sum_{i=1}^{N} |v_i(\lambda)|^2$

by using a multi-dimensional quadrature rule with weights $w^{(1)}, \ldots, w^{(K)} \in \mathbb{R}$: $v_i(\lambda) := \langle f(\lambda, \mathbf{p}), \phi_i(\mathbf{p}) \rangle \doteq \sum_{k=1}^{K} w_k f(\lambda, \mathbf{p}^{(k)}) \phi_i(\mathbf{p}^{(k)})$

UQ analysis : sensitivity analysis (II)

Local sensitivity :

$$\frac{\partial f}{\partial p_j}\bigg|_{p_j=\overline{p}_j} = \sum_{i=0}^N v_i \frac{\partial \phi_i}{\partial p_j} \frac{\partial \mathbf{p}}{\partial \xi_j}, \quad j=1,\ldots,Q.$$

Variance-based sensitivity :

$$S_j = rac{\mathsf{V}_j}{\mathsf{Var}(f)}$$
 with $\mathsf{V}_j := \sum_{i \in I_j} |v_i|^2$, $j = 1, \ldots, Q$,

 I_j : sets $I_j := \{j \in \mathbb{N} : \phi_j(\mathbf{p}) \text{ is not constant in } p_j\}$ Var(f): the total variance, $0 \le S_j \le 1$: upper and lower bounds

UQ analysis of the QPR

Result for the variance-based sensitivity analysis

Rostock

Result for MO robust shape optimization of QPR Formulation of MO robust optimization Parameters of stochastic simulation

Robust MO shape optimization

Random variables : $\boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3, \xi_4, \xi_5)$

Random dependent functionals :

$$[f_1(\mathbf{p}), f_2(\mathbf{p}), f_3(\mathbf{p})] := \left[\frac{1}{2U} \int_{\Omega_{\mathrm{S}}} \|\mathbf{H}(\mathbf{p})\|^2 \,\mathrm{d}\mathbf{x}, \frac{\int_{\Omega_{\mathrm{S}}} \|\mathbf{H}(\mathbf{p})\|^2 \,\mathrm{d}\mathbf{x}}{|\Omega_{\mathrm{S}}| \max_{\mathbf{x} \in \Omega_{\mathrm{S}}} (\|\mathbf{H}(\mathbf{p})\|^2)}, \frac{\int_{\Omega_{\mathrm{S}}} \|\mathbf{H}(\mathbf{p})\|^2 \,\mathrm{d}\mathbf{x}}{\int_{\Omega_{\mathrm{F}}} \|\mathbf{H}(\mathbf{p})\|^2 \,\mathrm{d}\mathbf{x}}\right]$$

Functionals for robust optimization :

$$\begin{split} &\inf_{\overline{\mathbf{p}} \in \mathbb{R}^{\mathbf{Q}}} \left[\mathbb{E}(f_1), \mathbb{E}(f_2), \mathbb{E}(f_3) \right]^\top \\ &\text{s.t. } \nabla \times \left(\nu \, \nabla \times \, \mathbf{E}(\mathbf{p}, \cdot) \right) - \lambda(\mathbf{p}) \, \epsilon \, \mathbf{E}(\mathbf{p}, \cdot) = 0, \\ & \rho_{L_{\mathbf{q}}} \leq \overline{\rho}_{\mathbf{q}} \leq \rho_{U_{\mathbf{q}}}, \text{ for } \mathbf{q} = 1, \dots, Q \end{split}$$

Approximation of probabilistic integrals : Stroud-3 formula (10 nodes)

Rostock

Parameters of stochastic simulation

Variations of geometrical parameters :

 \longrightarrow modeled by Gauss distribution

Random variations of parameters :

$$\begin{array}{l} \longrightarrow \mathsf{gap:} \ p_1 = \overline{p}_1(1 + \delta_1\xi_1) \\ \longrightarrow \mathsf{rrod:} \ p_2 = \overline{p}_2(1 + \delta_2\xi_2) \\ \longrightarrow \mathsf{hloop:} \ p_3 = \overline{p}_3(1 + \delta_2\xi_3) \\ \longrightarrow \mathsf{rloop:} \ p_4 = \overline{p}_4(1 + \delta_2\xi_4) \\ \longrightarrow \mathsf{wloop:} \ p_5 = \overline{p}_5(1 + \delta_2\xi_5) \end{array}$$

- independent normal random variables : $\xi_1, \xi_2, \xi_3, \xi_4, \xi_5$
- the magnitude of perturbation : $\sigma_q := \delta_q \cdot \overline{p}_q = 0.05 \, [\text{mm}]$

Robust MO Shape Optimization : Pareto front VBS-MO shape optimization

To solve MO robust optimization problem :

- $\longrightarrow \text{VBS-MO}$ steepest descent method
- \longrightarrow shape derivative approximated by element-wise product : $\textbf{S}\odot\nabla\textbf{f}$
- \longrightarrow analytical expression for steepest descent direction [FS00,LR16]

Convergence of Pareto Front using VBS-based approach [PGZWvR20]

Robust MO shape optimization: PDFs

PDFs of selected figures of merit calculated in CERN-, HZB-QPR and optimized configuration [PGZWvR20]

26. June 2020 © 2020 UNIVERSITÄT ROSTOCK I FACULTY OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING

Robust MO shape optimization

Probabilistic density functions for the frequency of the third operating mode

PDF of frequency for the third mode calculated in CERN -, HZB-QPR and optimized configuration [PGZWvR20]

Robust MO Shape Optimization : shapes of QPR VBS-MO shape optimization

TABLE V. Results	for the	MO	optimiz	ation –	parameter	domain	a
				· · II			

Name		$\Omega^*_{HZB}(\overline{\mathbf{p}})$	$\Omega^*_{\rm CERN}(\overline{\bf p})$	$\Omega^*_A(\overline{\mathbf{p}})$	$\Omega_{\rm B}^*(\overline{\mathbf{p}})$	
p_1 (gap)	[mm]	0.50	0.70	0.58	0.55	
p_2 (rrods)	[mm]	13.00	15.00	9.76	9.14	
p_3 (hloop)	[mm]	10.00	10.00	9.72	9.64	
p_4 (rloop)	[mm]	5.00	8.00	5.92	5.56	
$p_5 \text{ (wloop)}$	[mm]	44.00	40.93	43.79	43.53	
p_6 (dloop)	[mm]	6.00	5.00	4.00	4.00	
p_7 (rcoil)	[mm]	22.408	23.00	25.00	25.00	
p_8 (rsample)) [mm]	37.50	37.50	35.0	35.00	

Comparison between existing QPR designs and optimized ones [PGZWvR20]

Rostock

Robust MO Shape Optimization : summary

TABLE VI. results of the MO optimization for the first mode objective space							
Means/Configurations	$\Omega^*_{\rm HZB}(\overline{\bf p})$	$\Omega^*_{\rm CERN}(\overline{\bf p})$	[%]	$\Omega^*_A(\overline{\mathbf{p}})$	[%]	$\Omega^*_B(\overline{\mathbf{p}})$	[%]
$F_1(\Omega^*(\overline{\mathbf{p}}), \cdot) [M A^2/J]$	50.07	32.15	-36.55	56.31	11.13	58.47	15.39
$F_2(\Omega^*(\overline{\mathbf{p}}), \cdot) [1/1]$	0.155	0.218	41.15	0.227	48.84	0.216	39.70
$F_3(\Omega^*(\overline{\mathbf{p}}), \cdot) [M \ 1/1]$	1.668	0.890	-46.64	3.941	136.3	4.421	165.1
$F_4(\Omega^*(\overline{\mathbf{p}}), \cdot) \ [1/1]$	0.910	0.906	-0.43	0.901	-1.01	0.905	-0.62
$F_5(\Omega^*(\overline{\mathbf{p}}), \cdot) \ [\mathrm{mT}/(\mathrm{MV}/\mathrm{m})]$	7.888	5.250	-32.93	4.824	-38.84	4.940	-37.38
$F_0(\Omega^*(\overline{\mathbf{p}}), \cdot)$ [GHz]	0.429	0.398	-7.21	0.439	2.21	0.439	2.23

TAPLE VI. Popults of the MO optimization for the first mode ______ biostive space

^a The columns with percentage [%] indicate a ratio (increase +/decrease -) of optimized configurations to $\Omega_{HZR}^*(\overline{\mathbf{p}})$.

Means/Configurations	$\Omega^*_{\rm HZB}(\overline{\bf p})$	$\Omega^*_{\text{CERN}}(\overline{\mathbf{p}})$	[%]	$\Omega^*_A(\overline{\mathbf{p}})$	[%]	$\Omega^*_{\rm B}(\overline{\bf p})$	[%]
$F_1(\Omega^*(\overline{\mathbf{p}}), \cdot) [M A^2/J]$	52.28	30.63	-42.05	78.98	49.43	82.04	55.21
$F_2(\Omega^*(\overline{\mathbf{p}}), \cdot) [1/1]$	0.132	0.19	44.00	0.187	42.09	0.178	35.0
$F_3(\Omega^*(\overline{\mathbf{p}}), \cdot)$ [M 1/1]	0.791	0.467	-40.89	2.501	217.4	2.846	259.9
$F_4(\Omega^*(\overline{\mathbf{p}}), \cdot) \ [1/1]$	0.914	0.917	0.3	0.907	-0.81	0.897	-1.94
$F_5(\Omega^*(\overline{\mathbf{p}}), \cdot) \ [\mathrm{mT}/(\mathrm{MV}/\mathrm{m})]$	5.048	5.411	7.19	4.736	-6.18	4.685	-7.19
$F_0(\Omega^*(\overline{\mathbf{p}}), \cdot)$ [GHz]	1.312	1.225	-6.67	1.317	0.41	1.317	0.41

TABLE VIII. Results of the MO optimization for the third mode – objective space

^a The columns with percentage [%] indicate a ratio (increase +/decrease -) of optimized configurations to $\Omega_{HZR}^*(\overline{\mathbf{p}})$.

Motivation

Reliable & predictable simulations of QPR

Stochastic Forward Problem Parametrized model of QPR Pseudo-spectral Approach

Result for MO robust shape optimization of QPR

Parameters of stochastic simulation

Conclusions and further research

Conclusions :

Rostock

- → VBS robust MO shape optimization problem of **OPR** under uncertainties
- increasing the focusing factor of the third mode by 50-57% and 158-168% compared to the HZB and CERN designs,
- \longrightarrow better resolution of the surface resistance in different $freq_i$
- \rightarrow the dimensionless factor of *freq*₃ is more than twice bigger than for the HZB and CERN configuration
- \rightarrow it helps to decrease the measurement bias for the third mode in HZB and CERN designs

Further research directions :

Thank you for your attention