Local Loss Estimations based on Eigenvalue Calculations

W. Ackermann, H. De Gersem, W. F. O. Müller Institute for Accelerator Science and Electromagnetic Fields (TEMF), TU Darmstadt

Outline

- Motivation
- Numerical Solver Development
 - Superconducting Billards (lossless)
 - TESLA Resonators (lossy)
- Quadrupole Resonator
 - Mounting Cylinder (short/long slit)
 - Mounting Cylinder (connected/isolated sample)
 - Mounting Cylinder (straight/zigzag slit)
- Summary

Outline

Motivation

- Numerical Solver Development
 - Superconducting Billards (lossless)
 - TESLA Resonators (lossy)
- Quadrupole Resonator
 - Mounting Cylinder (short/long slit)
 - Mounting Cylinder (connected/isolated sample)
 - Mounting Cylinder (straight/zigzag slit)

Summary

Motivation

Quadrupole Resonator

- Radio frequency characterization of superconductor materials used for particle accelerators
- Geometry models from Marc Wenskat, **Oliver Kugeler and Sebastian Keckert**
- Eigenmode calculation based on the FEM using curved tetrahedral elements and a robust JD eigenvalue solver

Determination of the electric and magnetic field distribution in the entire computational domain

Geometry Information

- Cut views

Outline

Motivation

- Numerical Solver Development
 - Superconducting Billards (lossless)
 - TESLA Resonators (lossy)
- Quadrupole Resonator
 - Mounting Cylinder (short/long slit)
 - Mounting Cylinder (connected/isolated sample)
 - Mounting Cylinder (straight/zigzag slit)

Summary

Geometry Information Sample - Interchangeable sample fixture Mounting Cylinder **Calorimetry Chamber**

Geometry Information

- Model simplifications

Geometry Information

- Model simplifications

TECHNISCHE UNIVERSITÄT DARMSTADT

Simulation Model

- Numerical approach
 - Eigenmode calculation
 - Second order finite element method (FEM) on curved tetrahedral elements
 - Parallel Jacobi-Davidson
 eigenvalue solver
 - Grid refinement using four levels (artificially change of material properties)
- Field evaluation on the surface of the probe
 - Enforce local fine grid resolution in high field regions and in tiny gaps

Simulation Model

- Numerical approach
 - Eigenmode calculation
 - Second order finite element method (FEM) on curved tetrahedral elements
 - Parallel Jacobi-Davidson
 eigenvalue solver
 - Grid refinement using four levels (artificially change of material properties)
- Field evaluation on the surface of the probe
 - Enforce local fine grid resolution in high field regions and in tiny gaps

 $N_{\rm tet} = 17.737.075$

- Simulation Model
 - Tetrahedral element distribution

Simulation Model

- Tetrahedral element distribution

Simulation Model

- Tetrahedral element distribution around the horseshoe region

Simulation Model

- Tetrahedral element distribution around the isolation gap

$N_{\rm tet} = 17.737.075$

Eigenmode Calculations

- Selection of eigenmodes

Eigenmode Calculations

- Selection of eigenmodes

Eigenmode Calculations

- Selection of eigenmodes

Eigenmode Calculations

- Distribution of the magnetic field strength

Eigenmode Calculations

- Distribution of the magnetic field strength

Postprocessing

- Example for the distribution of specified sample points

Postprocessing

- Visualization of the field distribution on the sample surface

Postprocessing

- Visualization of the field distribution on the sample surface

TECHNISCHE UNIVERSITÄT DARMSTADT

Postprocessing

Postprocessing

$$P_{\nu} = \frac{1}{4} \,\mu \,\omega \,\delta \,I_{\nu}$$

$$I_{\nu} = \iint_{A_{\nu}} \vec{H} \cdot \vec{H} \, \mathrm{d}A$$

- Simulation results

N_{DOF}=18.830.148

N_{DOF}=19.870.254

Mode	Parameter	Model A	3.119.892 tets	Model B	3.314.581 tets
Quadrupole 1	f _{res} / MHz	431.694		431.687	
	I ₁ / kA²	102.220	99.43 %	102.216	99.43 %
	l ₂ / kA²	0.432	0.42 %	0.460	0.45 %
	I ₃ / kA²	0.153	0.15 %	0.125	0.12 %
Quadrupole 2	f _{res} / MHz	868.820		868.805	
	I ₁ / kA²	100.869	99.45 %	100.855	99.45 %
	l ₂ / kA ²	0.402	0.40 %	0.433	0.43 %
	l ₃ / kA²	0.158	0.16 %	0.129	0.13 %
Quadrupole 3	f _{res} / MHz	1311.578		1311.545	
	I ₁ / kA²	112.824	99.47 %	112.775	99.47 %
	l ₂ / kA ²	0.405	0.36 %	0.448	0.40 %
	I ₃ /kA²	0.194	0.17 %	0.159	0.14 %

 $P_{\nu} = \frac{1}{4} \,\mu \,\omega \,\delta \,I_{\nu}$ $I_{\nu} = \iint_{\Lambda} \vec{H} \cdot \vec{H} \, \mathrm{d}A$ Postprocessing - Simulation results N_{DOF}=104.994.928 N_{DOF}=108.944.262 Mode Model A 17.022.210 tets Model B 17.737.075 tets Parameter 431.742 Quadrupole 1 f_{res} / MHz 431.750 I_1 / kA^2 102.248 99.43 % 102.237 99.43% I_2 / kA^2 0.437 0.42 % 0.463 0.45 % I_2 / kA^2 0.153 0.15 % 0.125 0.12 % Quadrupole 2 868.926 868.912 f_{res} / MHz I_1 / kA^2 100.917 100.897 99.44 % 99.44 % I_2 / kA^2 0.406 0.436 0.40 % 0.43 % I_3 / kA^2 0.129 0.158 0.16 % 0.13% Quadrupole 3 f_{res} / MHz 1311.708 1311.682 I_1 / kA^2 112.833 112.879 99.47 % 99.46 % I_2 / kA^2 0.408 0.450 0.36 % 0.40 % I_3 / kA^2 0.194 0.17% 0.159 0.14 %

Postprocessing

- Visualization of the field distribution on the sample surface

Postprocessing

- Induced current direction for the first quadrupole mode

Postprocessing

Outline

Motivation

- Numerical Solver Development
 - Superconducting Billards (lossless)
 - TESLA Resonators (lossy)
- Quadrupole Resonator
 - Mounting Cylinder (short/long slit)
 - Mounting Cylinder (connected/isolated sample)
 - Mounting Cylinder (straight/zigzag slit)

Summary

Geometry Information

- Model simplifications

Geometry Information

- Model simplifications

Simulation Model A	Simulation Model B		
Connected sample	Floating sample		
	2 mm		
	12 mm		
	0.2 mm		

Geometry Information

- Model simplifications

Simulation Model B

Simulation Models

- Numerical approach
 - Eigenmode calculation
 - Second order finite element method (FEM) on curved tetrahedral elements
 - Parallel Jacobi-Davidson
 eigenvalue solver
 - Grid refinement using four levels (artificially change of material properties)
- Field evaluation on the surface of the probe
 - Enforce local fine grid resolution in high field regions and in tiny gaps

Geometry Information

- Model simplifications

Simulation Model A

Simulation Model B

Geometry Information

- Model simplifications

TECHNISCHE UNIVERSITÄT DARMSTADT

Postprocessing

$$P_{\nu} = \frac{1}{4} \,\mu \,\omega \,\delta \,I_{\nu} \qquad \qquad I_{\nu} = \iint_{A_{\nu}} \vec{H} \,\,\mathrm{d}A$$

- Simulation results

N_{DOF}=63.101.356

N_{DOF}=72.847.286

Mode	Parameter	Model A	10.327.702 tets	Model B	11.635.139 tets
Quadrupole 1	f _{res} / MHz	431.741		431.588	
	I ₁ / kA²	102.243	99.39 %	102.154	99.29 %
	l ₂ / kA²	0.436	0.42 %	0.692	0.67 %
	l ₃ / kA²	0.017	0.02 %	0.035	0.03 %
	I ₄ / kA²	0.002	0.00 %		
	I ₅ / kA²	0.017	0.02 %		
	I ₆ / kA²	0.153	0.15 %		

Outline

Motivation

- Numerical Solver Development
 - Superconducting Billards (lossless)
 - TESLA Resonators (lossy)

Quadrupole Resonator

- Mounting Cylinder (short/long slit)
- Mounting Cylinder (connected/isolated sample)
- Mounting Cylinder (straight/zigzag slit)

Summary

Geometry Information

- Model simplifications

Simulation Model A

Simulation Model B

Integration Area A₁

2 mm

Quadrupole Resonator

Geometry Information

- Simulation Model B

Geometry Information

- Model simplifications

Simulation Models A and B

Geometry Information

- Model simplifications

Simulation Models A and B

Z×

Postprocessing

$$P_{\nu} = \frac{1}{4} \,\mu \,\omega \,\delta \,I_{\nu} \qquad \qquad I_{\nu} = \iint_{A_{\nu}} \vec{H} \cdot \vec{H} \,\,\mathrm{d}A$$

- Simulation results

Quadrupole Resonator• Postprocessing $P_{\nu} = \frac{1}{4} \mu \omega \delta I_{\nu}$ - Simulation results

67

TECHNISCHE

UNIVERSITÄT DARMSTADT

Outline

Motivation

- Numerical Solver Development
 - Superconducting Billards (lossless)
 - TESLA Resonators (lossy)
- Quadrupole Resonator
 - Mounting Cylinder (short/long slit)
 - Mounting Cylinder (connected/isolated sample)
 - Mounting Cylinder (straight/zigzag slit)

Summary

Summary

- Numerical eigenmode calculations based on second order FEM and curved tetrahedral elements
 - Precise geometric modeling of the QPR
 - Accurate field calculation due to fine mesh resolution and parallel high performance computing
- Postprocessing of the calculated electromagnetic fields
 - Normal conductive Indium seal can dramatically reduce the quality factor of the entire QPR setup
 - Indium seal losses are proportional to the thickness of the resulting slit

7'