Large scale computing infrastructure at DESY - current status and planning of Interdisciplinary Data Analysis Facility (IDAF)

Christian Voss, Yves Kemp, for DESY IT IPC seminar 03.11.2020 DESY

With slide contributions from DESY and XFEL people

DESY research divisions ... In a nutshell

Accelerators »

Running / Operating:

- Planning:
- Petra IV

General Accelerator R&D

Photon science »

Petra III, FLASH, EXFEL, - Petra III, FLASH, XFEL, ... CFEL, CSSB, EMBL, HZG

Particle physics »

- LHC, HL-LHC
- Belle II
- ILC, ALPS,
- Theory division

DESY research divisions ... IT involvment in scientific computing

... An incomplete view

Accelerators »

- Storage operational data
- Simulation & computational infrastructure for R&D
- Support

Photon science »

- Online DAQ
- Offline storage & analysis infrastructure
- Simulation & computational infrastructure for R&D
- Support

Particle physics »

 Global and national tasks within LHC and BELLE II

- Simulation & computiational Infrastructure for ILC and detector R&D

- Support

Now, designing the compute and storage infrastructures

Computational requirements: Job size vs IO needs

Very very coarse

Computational requirements

Very very coarse

Ingest for any of the strengthened other ones **Storage systems** .arge Storing data **Photon Science** Simulation & Analysis 0 per process **Classical HTC system Classical HPC systems Particle Physics** Accelerator R&D **Simulation & Analysis** Simulation Small Job size (#cores/job, RAM/job) Small Large

HPC system with

Computational requirements

Very very coarse

-arge δ per process Small Ingest for any of the other ones Storing data

Grid & NAF/BIRD cluster +dCache storage (+NFS storage) Classical HTC system Particle Physics Simulation & Analysis HPC system with strengthened Storage systems Photon Science Simulation & Analysis

Maxwell HPC system + GPFS storage Using InfiniBand

Classical HPC systems Accelerator R&D Simulation

Small Job size (#cores/job, RAM/job) Large

Computational regu

.arge

O

per

process

Small

Very very coarse

Ingest for any of the other ones Storing data

Grid & NAF/BIRD cluster +dCache storage (+NFS storage) Classical HTC system Particle Physics Simulation & Analysis HPC system with strengthened Storage systems Photon Science Simulation & Analysis

Maxwell HPC system + GPFS storage Using InfiniBand

Classical HPC systems Accelerator R&D Simulation

Small Job size (#cores/job, RAM/job) Large

Data Storage: Essential for Science@DESY

Data Management

Today: Most Scientific Endeavours Produce Large Amounts of Data

• Computing@DESY: Storage of data for all departments and communities

(Astro-)Particle Physics

- Store and archive raw data
- Store and archive simulated data
- Store pre-processed data for
 - Experiment specific workflows
 - Dedicated user analyses

Accelerators and Detectors

- Store and archive simulated data
- Store and archive test-beam data
- Store and archive telemetry data

Photon Science

- Store simulated data
- Store and archive raw data
- Store pre-processed data for analyses

- Data as central element for most research
- Make data the central hub and trigger for scientific workflows

Example For Trigger on Data

AMPEL System Developed and Deployed in Zeuthen

- AMPEL: Real-Time astronomy data analysis framework to find transient objects
- Transient objects disappear to quickly for classic data analysis methods

- Message Producer Broker Consumer Model
 - Any shot generates notification in message system, triggering a detailed analysis, triggering publication message
- Similar application: Storage Events
 - Incoming data stream or file triggers analysis

Jobs on Compute Cluster
 Data flush to persistent storage

Data storage as Workflow engine

DESY. | Status IDAF @DESY | Christian Voss, Yves Kemp, IPC 03.11.2020

Trigger on Data: Photon Science Example

Start from the Existing Model

ASAP³

- Coverage of full data life cycle
- Multi-tier storage from:
 - Fast and small
 - Slow and large
- Time delay based synchronisation
- System in place at PETRA III/FLASH
 - High Data Rate Access HiDRA

size in GPFS

Data

Limitations

- Real-time data analysis data access in microseconds after generation
- Increased data rates and stored data for new detectors
- Revised system in place at European XFEL (e.g. larger focus on massstorage similar to HEP) due to Proposals ≈1PB
- PETRA IV: 10⁴ 10⁵ increased data rates

Paradigm Change for User Experiments

- Users do not have resources or might not be experienced enough to process data by themselves
- Data management becomes integral part of experiment

Trigger on Data: Photon Science Example

Adapt the Message Model to Photon Science

- Message Producer Broker Consumer Model
- A distributed streaming framework for high performance scientific data analysis
- File based service in place at PETRA III Beam Line p02
- Future: Keep data in transient memory
- Prototype code done including metadata DB (mongo)
- Builds for Linux & Windows
 - Performance critical code in C++
 - Python API (HiDRA compatible)
 - Deployment on Kubernetes
- Store of data after online analysis
- Deployment on HPC Resources on Maxwell

Analysis & simulation infrastructure at DESY

Basic setup at DESY

The Setup for particle physics

ssh / FastX

Belle II

The Setup for photon science & accelerator R&D

Slide stolen from Maxence Thévenet Architecture of a supercomputer

Number-crunching compute nodes + interconnect + file system

Compute node

Homogeneous within a partition of a supercomputer Accelerated computing (Graphics Processing Unit) More on that later Maxwell: - Homogeneous within partition: We try... - GPUs: Yes!

Interconnect

Invisible to the user (send a message) No all-to-all connections Multiple topologies (Fat Tree, Torus, Dragonfly) InfiniBand is a widespread communication standard

• Parallel file system (I/O) Maxwell: InfiniBand based storage:

GPFS, Lustre

- GPFS for \$HOME , P-3 and XFEL
- BeeGFS as "project space"

Software

Open-source, Linux-based Maxwell: Slurm Job scheduler: Slurm, LSF Supporting MPI Launcher (resource allocation, placement): mpirun, srun Many other applications available, incl. commercial ones

Comparing Maxwell HPC & GRID/NAF HTC systems

Feature	Maxwell	GRID/NAF
Size	~550 nodes / 35k cores / 280 TB RAM ~100 nodes with GPU	~ 900 nodes / ~30k cores / ~100 TB RAM
Network	InfiniBand for fast data & IPC, 10 GE Ethernet	1 GE - 10 GE Ethernet
Storage	Access to GPFS data (IB), dCache (NFS, Ethernet). BeeGFS for projects (IB)	dCache (NFS, Ethernet), GPFS (NFS, Ethernet)
Batch strategy	Whole/Multi-node-scheduling. Integration of private resources possible, with prioritized access.	Per-core-scheduling, no multi-node. Centrally procured resources. Fairshare on group basis.
Product	SLURM	HTCondor

GPU computing & Machine Learning

- General GPU computing established in HPC systems
 - ... so in Maxwell: ~100 nodes equipped with GPUs
 - Different generations, different setups: From one GPU/Server to four GPU/Server
- Maxwell HPC cluster natural candidate for hosting GPU computing
 - Users have applications profiting from GPUs
 - GPUs benefit from "HPC-like" environment

- Machine Learning
 - Boosted by the usage of GPUs for training (and inference)
 - Benefits heavily from fast access to (large amounts of) data, and high-RAM machines
 - Maxwell is natural environment

- **Future** of GPU computing & Machine Learning
 - We see an increase in demand for "multi-GPU nodes" (~4 GPU/node)
 - Expensive, few nodes, challenging from scheduling point of view
 - Look for alternatives to NVIDIA. Have some examples in the lab. Dependency from CUDA challenging

Maxwell: plans for the furutre

- Strengthen Maxwell role as central DESY simulation and analysis hub
- Use the opportunity with the IDAF to optimize resource allocation, based on concrete needs of the job
 - Long-term goal: Transparent Cross-Cluster usage
- Keep Maxwell up-to-date:
 - In terms of hardware, quantity and quality
 - In terms of services offered
- Maxwell is a HPC cluster ... and more:
 - Uses HPC technology and concepts (hardware, software, scheduling, ...)
 - Platform for online Petra-III & XFEL datataking and analysis
 - Flexible access to resources. Do things one cannot do at large HPC facilities

Making batch more user-friendly – and maybe overcome it?

- Select a good scheduler ... With active developer
- Containers healing the OS & software incompatibilities
 - Started on Maxwell in 2016, using Docker technology
- Interactivity & access: Jupyter
 - Integrate interactivity into batch
 - "Tragedy of the commons"
- git based workflows & CI/CD
 - gitlab pilot phase, launch probably early 2021
- And ever and ever again, do training, taking by the hand, ...

Jupyter: Interactive & easy remote access

Jupyter notebooks and Maxwell

What are Jupyter Notebooks? Data analysis and simulation in your browser

- Python based interpreter for Python, Matlab, ...
- Access via web-browser through portal
- Computation itself happens on Maxwell: Integration
 with SLURM scheduler
- https://max-jhub.desy.de/

Maxwell partitions(i) node on ALL partition	
Choice of GPU(i) none 🛊	
Note: For partitions without GPUs (or choice of GPUs) the GPU	
selection will be set to 'none'	Notebook:
Constrainte	Bash
	Matlab R2018b
Note: This will override GPU selections!	Python 3
Number of Nodes 1	Python [conda env
Note:Number of nodes will be set to 1 on shared jhub partition!	Python [conda env
	Python [conda env
Job duration (i) 1 hour(s) \$	Python [conda env
Note: on the shared Jupyter partition (jhub) the time limit is always 7	Python [conda env
days!	Python [conda env
	Pytorch
	Tensorflow-GPU
Remote Notebook (i) Pick a Notebook	Other:
	Text File
	Folder
	Terminal

Maxwell Jupyter Job Options

	Upload	New -	С	
Notebook:			~	
Bash			9	
Matlab R2018b				
Python 3				
Python [conda env:Spyder]				
Python [conda env:Tensorflow-GPU]				
Python [conda env:Tensorflow2]				
Python [conda env:pyFAI]				
Python [conda env:pytorch]				
Python [conda env:tomopy]				
Pytorch				
Tensorflow-GPU		-		
Other:				
Text File				
Folder				
Terminal				

dCache Storage System - Mass storage for HEP, photon science & accelerator

The dCache Storage System

Distributed Scalable Mass Storage System

- Central element in overall storage strategy
- Collaborative development under open source licence by
 - DESY (leading laboratory)
 - Fermilab
 - Nordic E-Infrastructure Collaboration (ex. NDGF)

Particle Physics

- In production at 9 of 13 WLCG Tier-1 centres
- In use at over 60 Tier-2 sites world wide
- 75% of all remote LHC data stored on dCache
- In addition: Tevatron and HERA data

Astronomy & Radio-Astronomy

- LOFAR Long Term Archive (~40 PB) & CTA
- SkySurvey

Photon Science

• European XFEL, CFEL and others for archival

Accelerator and Detectors

• FLASH, LINAC telemetry

dCache: Architecture

User Access to dCache Responsible to Store Machine Data

Use dCache: Access to /pnfs/desy.de/

- dCache instances for Photon Science/Machine, European XFEL, ATLAS, CMS, Belle/ILC/DPHEP, Sync&Share
- Similar layout: three head-nodes, doors for requested protocols and pools nodes
- Scale-out horizontally: 10 pool nodes for Sync&share and 200 for European XFEL with 100 more ordered
- Scale-out horizontally: client always to connect to pools for transfer, no data access through doors

٠

٠

dcache-photon45.desy.de

dCache: Capacity of Local DESY Instances

Available and Used dCache Storage

- Steady increase for HEP since inception of dCache
- Exponential increase for Photon science since start of European XFEL
- HEP dCache is connected to the WLCG
- Transfers all over the world

A view to particle physics analysis

HEP communitites at DESY

Community / Experiments	Compute activities
EXPERIMENT	Grid Tier-2, German NAF users
Belle I	Compute & Storage, Management services, Collaborative tools,
	Compute & Storage, Management services
ZEUS HERA hermes	Compute & Storage, Management services

The Setup for particle physics

NAF (+Grid)

CERN

WLCG Worldwide LHC Computing Grid

ssh / FastX

HEP and Batch?

- Batch based computing Ansatz long established in HEP
- Nevertheless: Alternatives are being investigated:
- NAF: Augment Grid with interactive resources
- Jupyter as new access method is being rolled out successively
 - Investigation on Jupyter resource scaling
 - "Tragedy of the commons"
- Investigating DASK & Spark as non-batch compute organization
- gitlab / CI/CD workflows ... connection to batch?
- Batch ↔ Cloud integration

(Compute) Cloud at DESY

(Compute) Cloud at DESY

- Compute Cloud Infrastructure @DESY:
 - Running OpenStack, with CEPH backend
 - ~1000 CPU cores
- Objectives:
 - Boring: Bring classical server consolidation workflows to cloud VMs
 - Interesting: Adding flexibility to current batch clusters (and IT infrastructures)
 - Thrilling: Compute cloud as enabler of novel Scientific Workflows (and general IT)
- Status:
 - Partially in production for D/EU projects
 - DESY pilot phase planned for 2021
 - Constant development and evolution ahead!

Unified Compute Infrastructure a.k.a.

InterDisciplinary Analysis Facility IDAF

One vision for the future

Following Changes in Communities

New Tools and Workflows Bring Communities Closer Together

Revisit diagram from beginning

Merging of Infrastructure

Drafting the IDAF

• Unify infrastructure to use one interface

DESY. | Status IDAF @DESY | Christian Voss, Yves Kemp, IPC 03.11.2020

Technical Design Layout

Experiment Frameworks

High Level Interface Layer

Summary & Outlook

Interdisciplinary DESY IT already serves all branches of Science at DESY

- Infrastructures are there, and working well ...

DataScience produces large amount of data

- Detectors, Acclerators and Simulation

Analysis Main goal is to provide best possible analysis infrastructure for all our users.

- Large scale offline, and fast online ... overcome online/offline barrier for analysis

Facility

Not an institute cluster: Facility for internal and external users

- With state of the art resources and following technology evolution
- Providing more than just "compute access": CI/CD, Jupyter, Container&Orchestration...