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Standard model and beyond?

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions)
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Figure: Fundamental particles of the
standard model



Top Quarks

» heaviest known fundamental

particle
> 173GeV = Mgold
» Coupling to Higgs boson
close to one
» chance or BSM physics?

» decays before hadronization
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Figure: Production and dileptonical
decay of a tt pair
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Figure: Diagram showing the relative
frequencies of the top-antitop pair
decay channels



Reconstruction via an analytical solution (Sonnenschein)
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Figure: Dileptonic decay with the additional equations introduced to find
an analytical solution



Predictions of regression decision trees

Jetl_pz <=-0.732
mse = 187464.496
samples = 311823

Jetl_eta <= -1.623 jetl_eta <= 1.614
mse = 116105.765 mse = 116948.438
samples = 154623 samples = 157200
value = -267.842 value = 264.845
mse = 46267.094 mse = 46608.784
sam| 118467 samples = 120566

Figure: Example of a decision tree predicting p, with depth 2

» Every event starts in the root
> If jetl_pz < —0.732, it progresses to the left, else to the right
P> Path ends in a leaf. Value of that leaf is predicted

» Building algorithm determines splits and values



Decision tree building algorithm

» value: mean p, of all events in that
node

» mse: variance

» choose split with highest variance
decrease A/

» feature importance of a variable:
fraction of total variance decrease
by splits on that feature

» For gradient boosting: maximize

Al N
Nnode right Nleft
Al = Ihode — —EME f e — ——ft
Ntotal( node Nnode right Nnode IEft)
~ Niefe Nright ,_ _
AT = =% (Viefs — Fright)’

Nleft + Nright

jetl_pz <=-0.732

mse = 187464.496

samples = 311823
value = 0.702

mse = 116105.765
samples = 154623
value = -267.842

mse = 116948.438
samples = 157200
value = 264.845

Figure: Decision tree
predicting p, of depth 1



The gradient boosting algorithm

Target values for the first tree
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Figure: First step of training
GBDTs to predict p,



Data sets

» Approximate detector
simulation

P selfgenerated using
Delphes
» Full detector
simulation
» centrally produced
NanoAOD
» 2 btags, 2 leptons
opposite charge and
pt > 10 GeV
» 4 sets: Delphes
(sorted/unsorted),
NanoAOD
(sorted/unsorted)
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Figure: top pair production via gluon fusion
and dileptonic decay
» leptl positive, lept2 negative
» unsorted sets: jetl higher p1
» Delphes sorted: jetl minimizes
top  _jetl  leptl neutrino
pX X X pX
» NanoAOD sorted: use
partonFlavour to find b/antib jets



Input to training

Type | shortcut variables
lepton lept pt, eta, phi, px, py, pz, E

jet jet pt, eta, phi, mass, px, py, pz, E, btagDeepB (NanoAOD)
MET MET E™iss, phi, px, py

Table: Overview of the input variables used for the reconstruction.

» input: kinematic variables of lepton, jets and MET
» includes redundancies, might be more accessible for a decision
trees

» train models with different parameters

. : 2 _ 1 2iali—9)?
P choose the one with the highest R< =1 (L



Resulting reconstruction
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Figure: Two dimensional histogram of points (pxytop,pf,rtefpimd) for each

data set.



Differences between variables and sets

R? on test set: p, > px ~ p, > pT
performance on py, p, gain a lot from sorting

>
| 2
» performance on p,, pt gain less from sorting
» on sorted sets about equally good

| 2

Generally: Delphes unsorted > NanoAOD unsorted



Feature importance

Delphes unsorted

leptl
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Figure: Feature importance best model per data set predicting px

jetl jet2 leptl lept2
Delphes unsorted | 0.0634 | 0.0197 | 0.6476 | -0.5040
sorted | 0.6826 | -0.5692 | 0.6476 | -0.5040
NanoAOD unsorted | 0.0851 | 0.0169 | 0.5807 | -0.4596
sorted | 0.6659 | -0.5265 | 0.5761 | -0.4545

Table: Correlation of columns p, with top's py




Summary

Conclusion:
Outlook:

» powerful and
comprehensible
reconstruction method

» feature selection and
dimensionality reduction

» remove redundant features,

» search for improvements inroduce new ones
possible by analyzing > evaluate effect of cuts
learning » kinematic cuts seem helpful
» Separating bjets and so far
antibjets helpful but not » more efficient implementation
crucial » robust model using more data
» Correlating variables > compare with analytical solution
turned out to be very > test application in BSM theories

helpful



Backup



Proton collisions at the Large Hadron Collider

» proton-proton collider at 13
TeV center of mass energy

» protons not fundamental

» mixture of quarks and
gluons (partons)

» proton momentum split
among partons

» proton collision = collision

of different partons Figure: Schematic
representation of the

> rest frame of proton collision
structure of the proton

# rest frame of parton
collision



Coordinates

» polar coordinates in the
transverse plane are natural
due to symmetry

» polar angle @ not invariant
under boosts

LHCb

» pseudo rapidity
n=—In(tan g) transforms o e s
additively for highly Figure: Coordinate system within a
relativistic particles detector

» differences invariant under
boosts
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