Application of gradient boosting in the kinematic reconstruction of ttbar events

Kolloquium in the program Computing in Science

Karim Ritter von Merkl

28. September 2020

Standard model and beyond?

Standard Model of Elementary Particles three generations of matter interactions / force carriers (fermions) (bosons) Ш mass =2.2 MeV/c² =124.97 GeV/c² C up charm top gluon higgs SCALAR BOSON b down strange bottom photon =105.66 MeV/c2 electron Z boson muon tau EPTONS <0.17 MeV/c² <18.2 MeV/ci

Figure: Fundamental particles of the standard model

tau

neutrino

W boson

electron

neutrino

muon

neutrino

Figure: Predicted and observed rotational velocities of a spiral galaxy

Top Quarks

- heaviest known fundamental particle
 - ▶ 173 GeV $\approx m_{\rm gold}$
- Coupling to Higgs boson close to one
 - chance or BSM physics?
- decays before hadronization

Figure: Production and dileptonical decay of a $t\bar{t}$ pair

Top Pair Decay Channels

SO	n+jets	muon+jets	tau+jets	all-hadronic					
ūα	electro			ап-пасгопіс					
ال	еτ	μτ	Ŀξτ	tau+jets					
	еμ	, Q ^Q	μτ	muon+jets					
Φ	eδ	еμ	еτ	electron+jets					
N decay	e ⁺	μ^{+}	τ+	ud	cs				

Figure: Diagram showing the relative frequencies of the top-antitop pair decay channels

Reconstruction via an analytical solution (Sonnenschein)

Figure: Dileptonic decay with the additional equations introduced to find an analytical solution

Predictions of regression decision trees

Figure: Example of a decision tree predicting p_z with depth 2

- Every event starts in the root
- ▶ If jet1_pz ≤ -0.732 , it progresses to the left, else to the right
- ▶ Path ends in a leaf. Value of that leaf is predicted
- Building algorithm determines splits and values

Decision tree building algorithm

- value: mean p_z of all events in that node
- mse: variance
- choose split with highest variance decrease ΔI
- feature importance of a variable: fraction of total variance decrease by splits on that feature
- ► For gradient boosting: maximize \(\widetilde{I} \)

Figure: Decision tree predicting p_z of depth 1

$$\Delta I = \frac{N_{\text{node}}}{N_{\text{total}}} (I_{\text{node}} - \frac{N_{\text{right}}}{N_{\text{node}}} I_{\text{right}} - \frac{N_{\text{left}}}{N_{\text{node}}} I_{\text{left}})$$

$$\Delta \tilde{I} = \frac{N_{\text{left}} N_{\text{right}}}{N_{\text{left}} + N_{\text{right}}} (\bar{y}_{\text{left}} - \bar{y}_{\text{right}})^2$$

The gradient boosting algorithm

- ▶ input x_i , target y_i , prediction \hat{y}_i
- final prediction: sum of individual predictions
- minimize loss function by training next tree
- ► Here: Using least square loss $L(\hat{y_i}, y_i) = (y_i \hat{y_i})^2$
- train next tree trained on the error made so far

Figure: First step of training GBDTs to predict p_z

Data sets

- Approximate detector simulation
 - selfgenerated using Delphes
- Full detector simulation
 - centrally produced NanoAOD
- ▶ 2 btags, 2 leptons opposite charge and $p_T > 10 \,\text{GeV}$
- 4 sets: Delphes (sorted/unsorted), NanoAOD (sorted/unsorted)

Figure: top pair production via gluon fusion and dileptonic decay

- ▶ lept1 positive, lept2 negative
- unsorted sets: jet1 higher p_T
 - Delphes sorted: jet1 minimizes $|p_x^{\text{top}} p_x^{\text{jet1}} p_x^{\text{lept1}} p_x^{\text{neutrino}}|$
- NanoAOD sorted: use partonFlavour to find b/antib jets

Input to training

Type	shortcut	variables				
lepton	lept	pt, eta, phi, px, py, pz, E				
jet	jet	pt, eta, phi, mass, px, py, pz, E, btagDeepB (NanoAOD)				
MET	MET	$E_T^{ m miss}$, phi, px, py				

Table: Overview of the input variables used for the reconstruction.

- input: kinematic variables of lepton, jets and MET
- includes redundancies, might be more accessible for a decision trees
- train models with different parameters
- ▶ choose the one with the highest $R^2 = 1 \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i \bar{y})^2}$

Resulting reconstruction

Figure: Two dimensional histogram of points $(p_{x,top}, p_{x,top}^{predicted})$ for each data set.

Differences between variables and sets

- ▶ R^2 on test set: $p_z > p_x \approx p_y > p_T$
- \triangleright performance on p_x, p_y gain a lot from sorting
- ▶ performance on p_z , p_T gain less from sorting
- on sorted sets about equally good
- Generally: Delphes unsorted > NanoAOD unsorted

Feature importance

Figure: Feature importance best model per data set predicting p_x

		jet1	jet2	lept1	lept2
Delphes	unsorted	0.0634	0.0197	0.6476	-0.5040
	sorted	0.6826	-0.5692	0.6476	-0.5040
NanoAOD	unsorted	0.0851	0.0169	0.5807	-0.4596
	sorted	0.6659	-0.5265	0.5761	-0.4545

Table: Correlation of columns p_x with top's p_x

Summary

Conclusion:

- powerful and comprehensible reconstruction method
- search for improvements possible by analyzing learning
- Separating bjets and antibjets helpful but not crucial
- Correlating variables turned out to be very helpful

Outlook:

- feature selection and dimensionality reduction
 - remove redundant features, inroduce new ones
- evaluate effect of cuts
 - kinematic cuts seem helpful so far
- more efficient implementation
 - robust model using more data
- compare with analytical solution
- test application in BSM theories

Backup

Proton collisions at the Large Hadron Collider

- proton-proton collider at 13
 TeV center of mass energy
- protons not fundamental
- mixture of quarks and gluons (partons)
- proton momentum split among partons
- proton collision = collision of different partons
- ▶ rest frame of proton collision≠ rest frame of partoncollision

Figure: Schematic representation of the structure of the proton

Coordinates

- polar coordinates in the transverse plane are natural due to symmetry
- polar angle θ not invariant under boosts
- ▶ pseudo rapidity $\eta = -\ln\left(\tan\frac{\theta}{2}\right)$ transforms additively for highly relativistic particles
 - differences invariant under boosts

Figure: Coordinate system within a detector