
Goal for slow extraction (typ. 5 s, 500 MeV/u): Improvement of 'micro-spill' up to Poisson limit:

Display: Counts analyzed \Rightarrow acc. physics quantity

for **online** accelerator optimization

Latest achievements:

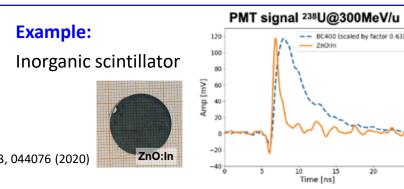
Rate-dependent Poisson limit almost reached

 \Rightarrow increase of count-rate required to

$$r_{aver} = 10^7 \dots 10^8 \text{ s}^{-1}, r_{max} = 10^8 \dots 10^9 \text{ s}^{-1}$$

Detector requirements:

Size: At least 4 x 4 cm²


beam size ≈ 1 cm, but movement ≈ 2 cm Count rate: At least $r_{max} = 10^8 \text{ s}^{-1}$ good pulse-height resol. for robust trigger Rad-hardness: At least $10^{12} \text{ cm}^{-2} \text{ U}@300 \text{ MeV/u}$ $\approx 5 \text{ MGy i.e. 100x plastic scintillator}$ Dynamic range: At least C to U @ E_{kin} $\geq 300 \text{MeV/u}$ Channels: In principle only one but segmentation to increase count rate Signal processing: Simple for reliable operation

What is the best siuted detector?

scDiamond, LGAD, scintillator.....

R&D required for optimal detector and electronics

Installation: Movable in beam line

Peter Forck, BMBF application 21 Sept. 2020

Fast detector for beam diagnostics