Atmospheric Muons in IceCube

Patrick Berghaus University of Delaware

Basics

IC22 Trigger Level Track Reco (SPE IIh) below Horizon

All-Sky Analysis: Final Cut Levels

IC22, All Sky (2008)

Atmospheric Muons Patrick Berghaus University of Delaware

CORSIKA: Hadronic Interaction Models

SIBYLLIceCube Default40 showers/secQGSJET-IICommon Alternative3 showers/secEPOS 1.9New in 20091 shower/sec

Radius

Muon Energy

CORSIKA Atmospheres

Full Shower Simulation

University of Delaware

Slant Depth

Horizontal Muons

Zenith Angle

Slant Depth

vertical depth/cos(zenith)

Dust Layers

μ -v Transition: Data and MC

Composition Models (poly-gonato)

cut-off:	rigidity		mass		constant	
	dependent		dependent			
$\hat{E}_Z =$	$\hat{E}_p \cdot Z$		$\hat{E}_p \cdot A$		\hat{E}_p	
	<u> </u>		1 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3		1 \$ 50 \ \ 18.3\$	(common 2)
(#4)\$\$()))))))))))))))))))))))))))))))))	-4.68 ± 0.23		$+7.82 \pm 1.69$		$+3.06\pm0.02$	
	81.61 + 78.1		(2.30 ± 0.23)		1.94 ± 0.51	
(#X6886/X/)	0.116		0.299		0.086	
$\hat{E}_p [\text{PeV}] =$	4.49 ± 0.51		3.81 ± 0.43		3.68 ± 0.39	common $\Delta \gamma$
$\Delta \gamma =$	2.10 ± 0.24		5.70 ± 1.23		0.44 ± 0.02	
$\epsilon_c =$	1.90 ± 0.19		2.32 ± 0.22		1.84 ± 0.45	
$\chi^2/d.o.f. =$	0.113		0.292		0.088	
Rigidity			Mass	Constant		
-Dependent				Composition		
Ċutoff						
0210452						

astro-ph/0210453

MC Event Rates in IC40 (High-Quality)

ІсеТор

≈1EeV event, August 2008

InIce reconstructed track

DOM Waveforms

Muon Monte Carlo: a high-precision tool for muon propagation hep-ph/0407075 through matter

hep-ph/0407075

Dmitry Chirkin¹, Wolfgang Rhode²

chirkin@physics.berkeley.edu rhode@uni-wuppertal.de

few TeV

Simulated detector Response to vertical showers (total pe)

MC Event Rates

Data/MC: p.e. in Event

Single Muon Energy

Muon Spectrum

Prompt Muons: Out of Reach?

CR Composition Sensitivity of IceCube

IceTop Standalone: Angular Dependence of Energy Spectrum

IceTop/InIce Coincidence:

Relation between total (EM) shower energy and high-E muon multiplicity

InIce High-E tracks:

Multiplicity (energy loss) spectrum of muon bundles

Inlce near-horizontal tracks:

Muon energy spectrum cutoff for poly-gonato-like composition

Backup Slides

Slant Depth and Bundle Multiplicity

Point Spread Function (MC)

34

2008 Data

Relative Muon Rate and T_{eff} vs Days 0.04 Effective Te 0.02 0.02 Effective Temperature T -0.02 ≈20% -0.04 -0.06 -0.08 -0.1 -0.12 340 360 180 200 220 240 260 280 300 320 Days Since 1/1/07 Source: D. Rocco

T_{eff}: Temperature weighted by muon production probability

$$T_{eff} = \frac{\int_0^\infty \frac{dX}{X} T(X) (e^{-X/\Lambda_\pi} - e^{-X/\Lambda_N})}{\int_0^\infty \frac{dX}{X} (e^{-X/\Lambda_\pi} - e^{-X/\Lambda_N})}$$

