KASCADE-Grande : first results!

Application of different methods:

- -Using the shower size (N_{ch}) as observable
- -Using the muon size (N_{μ}) as observable
- -Using the density at 500m (S_{500}) as observable
- -Using combination of N_{μ} and N_{ch} as observables

- -Cross check of reconstruction procedures -Cross check of systematic uncertainties
- -Test sensitivity to composition
- -Cross check of validity of hadronic interaction models

2

size spectra (charged particles)

muon number spectra (N_u; E_u>230MeV)

-stable data taking since 2004, c. 900 days effective DAQ time -performance of reconstruction (and detector) is stable

3

constant intensity cut method CIC (N_{μ} , N_{ch} , S_{500}) = correct for the attenuation from data

N_µ, N_{ch}, S₍₅₀₀₎ of each event normalized to a certain zenith angle

Way to all particle energy spectrum : via shower size (N_{ch})

Way to all particle energy spectrum : via muon number (N_µ)

QGSJET II hadronic interaction model

-Less good reconstruction accuracy -Less composition dependence

KASCADE-Grande collaboration (J.C.Arteaga-Velazquez), ICRC 09

Way to all particle energy spectrum : via combination of N_{μ} and N_{ch}

 $log_{10}(E) = [a_p + (a_{Fe} - a_p) \cdot k] \cdot log_{10}(N_{ch}) + b_p + (b_{Fe} - b_p) \cdot k$ $k = (\log_{10}(N_{ch}/N_{u}) - \log_{10}(N_{ch}/N_{u})_{p}) / (\log_{10}(N_{ch}/N_{u})_{Fe} - \log_{10}(N_{ch}/N_{u})_{p})$ dN/dE x E^{2.5} (m⁻²sr⁻¹s⁻¹eV^{1.5}) 0 1 **QGSJET II** hadronic interaction model All bins ^{1.5} 1.4 1.4 1.3 bins 1+2 △ bins 4+5 Proton Iron * All 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 8.25 8.5 8.75 9 log10(E/GeV) 7.25 7.5 7.75 8 7 ^{8.75} 9 log₁₀(E/GeV) 7.25 7 7.5 8.25 8.5 7.75 8

-different zenith angle bins -no composition dependence

KASCADE-Grande collaboration (M.Bertaina), ICRC 09

7

Way to all particle energy spectrum : via S(500)

Zeuthen, February 2010

The all-particle energy spectrum

- very good agreement between results of different methods

Systematic Uncertainties

- Sources of uncertainty:
- 1) Observable reconstruction
- 2) CIC method, attenuation
- 3) Energy vs N_u relation
- 4) Influence of MC statistics
- 5) Spectral index in MC sample
- 6) Composition assumption

Uncertainty in flux:

Systematic uncertainty in flux at 10¹⁷eV (QGSJet/FLUKA)

- N_{ch}-N_u: 20% (incl. composition)
- S(500): 37% (incl. composition)
- N_{ch}: 12%,20% (for primary iron, proton)
- N_{μ} : 11%,14% (for primary iron, proton)

10

Single event measurement:

Energy resolution $\sigma E/E$ [%] at $10^{17}eV$ (QGSJet/FLUKA)

$$\begin{split} N_{ch} &- N_{\mu} : 22\% \text{ (incl. composition)} \\ S(500): 22\% \text{ (incl. composition)} \\ N_{ch}: 15\%, 31\% \text{ (for primary iron, proton)} \\ N_{\mu}: 19\%, 28\% \text{ (for primary iron, proton)} \end{split}$$

. . . .

- note: proton and iron have inverted order for the 2 methods!

- QGSJet II: heavy composition preferred

- Differences due to different sensitivity to composition?

The all-particle energy spectrum

- spectrum not describable by a single power law at 10¹⁶-10¹⁸eV

The all-particle energy spectrum

- good agreement with other experiments

KASCADE-Grande all-particle energy spectrum

KASCADE-Grande all-particle energy spectrum

17

systematic checks: hadronic interaction model

-KASCADE: EPOS 1.61 is not compatible with data → waiting for EPOS 1.99

Muon reconstruction at inclined showers

Discrepancy between energy spectra from vertical and inclined showers

Difference between MC and KASCADE-Grande muon attenuation lengths

19

Zeuthen, February 2010

Ways to elemental composition :

Application of different methods:

- Local muon densities
- High-energy muon investigations
- Parametric combination of N_{ch} , N_{μ}
- kNN method
- Fit of N_µ/N_e -ratios in fixed size/ energy bins
- Unfolding of the 2-dimensional shower size spectrum
 - ➔ energy & composition
 - → still improvements in systematics needed
 - higher statistics

20

Way to elemental composition : muon density investigations

muon (local) density reconstruction for different, but fixed distances
 composition sensitive
 model tests: "heavy" for QGSJet, "light" for EPOS

KASCADE-Grande collaboration (V. de Souza), ICRC 09

Way to elemental composition : N_{μ}/N_{e} -ratio

QGSJET II hadronic interaction model

shower size ratio: investigation of mean and rms
 rms of simulated distributions less model dependent than mean

Composition: more than 2 components needed;
 Consistent with KASCADE in overlapping range

KASCADE-Grande collaboration (E. Cantoni), ICRC 09

Way to elemental composition : N_{μ}/N_{e} -ratio

→more than 2 components also needed at higher energy

KASCADE-Grande collaboration (E. Cantoni), ICRC 09

Muon Tracking Detector

Implications

A.M.Hillas, J. Phys. G: Nucl. Part. Phys. 31 (2005) R95

V.Berezinsky, astro-ph/0403477

KASCADE-Grande:

spectrum without distinct structure mixed composition

- pure rigidity model unlikely
- at 10¹⁸eV eg-protons only unlikely

Zeuthen, February 2010

KASCADE-Grande

A.Erlykin, ICRC2009; astro-ph/0906.3949.

KASCADE-Grande unfolding analysis

Marcel Finger

Zeuthen

February 2010

Marcel Finger KASCADE-Grande unfolding analysis

∃⊳

KASCADE:

- 200m x 200m, 252 detector stations
- muon and electron detectors

Grande:

- 700m × 700m, 37 detector stations
- measures muons+electrons
- muon detectors of KASCADE are used to reconstruct muon number

basis of analysis

$$N_{i} = const. \sum_{A=1}^{N_{A}} \int_{\theta_{1}}^{\theta_{2}} \int_{-\infty}^{+\infty} \frac{dJ_{A}}{\mathrm{dlg}E} \times p_{A}((\lg N_{e}, \lg N_{\mu})_{i} | \lg E) \times f(\theta) \mathrm{dlg}E \, \mathrm{d}\theta$$

 N_i : number of showers in one cell A: mass number of primary (H, He, C, Si, Fe) $\frac{dJ_A}{dlgE}$: sought-after energy spectrum p_A : probability to reconstruct sizes $\lg N_e$ and $\lg N_\mu$

probability p_A

$$p_{A} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} s_{A} \epsilon_{A} r_{A} \operatorname{dlg} N_{e}^{true} \operatorname{dlg} N_{\mu}^{true}$$

The probability p_A includes:

- s_A : shower fluctuations
- ϵ_A : efficiencies
- r_A: reconstruction uncertainties

$\implies \begin{array}{l} \text{determination of } s_A, \epsilon_A \text{ and } r_A \\ \text{by Monte Carlo simulations} \end{array}$

- ∢ ≣ ▶

used hadronic interaction models: QGSJetII + FLUKA

- Parameterization of shower fluctuations:
 - thinned showers
 - fixed energies (2, 5, 10, 30, 100, 300, 1000, 3000 PeV)
- Determination of efficiencies and reconstruction uncertainties:
 - $\bullet\,$ fully simulated CORSIKA showers + detector simulation

shower fluctuations and reconstruction uncertainties

shower fluctuations

statistical reconstruction uncertainties

full efficiency for all primaries

• at $\lg N_\mu pprox 5$

• at
$$\lg N_e \approx 6$$

æ

Rigitidity dependant knee positions:

$$rac{dI(E)}{dE} \propto E^{\gamma} \left(1 + \left(rac{E}{E_{K}}
ight)^{\epsilon}
ight)^{(\gamma_{2} - \gamma_{1})/\epsilon}$$

E_K: energy of the knee
γ₁: index before the knee
γ₂: index after the knee
ε: width of the knee region

3

- test spectra with primary dependent knee positions
- forward folding of test spectra with response matrices \Rightarrow 2-d shower size spectra
- deconvolution of 2-d size spectra and compare true and reconstructed spectra

- 5 mass groups used for deconvolution
- arbitrarily chosen test spectra
- good agreement of true and reconstructed spectra

P

- 5 mass groups used for deconvolution
- arbitrarily chosen test spectra
- reconstruction fails

< 同 ▶

- 5 mass groups used for deconvolution
- arbitrarily chosen test spectra
- only shower fluctuations are taken into account
- no detector effects

- 5 mass groups used for deconvolution
- only shower fluctuations are taken into account
- no detector effects
- 10 times more events than in the set shown before

- 5 mass groups used for deconvolution
- carbon represents sum of He, C and Si

- \bullet only low statistics especially for showers with ${\rm E}>10^{17} eV$ in Grande data
- misreconstructed spectra are due to low statistics combined with resolution effects of the detector
- good agreement of unfolded all particle spectra from KASCADE and Grande
- heavy composition
- outlook
 - investigate systematical and statistical uncertainties