The Pierre Auger Observatory

Ralph Engel, for the Pierre Auger Collaboration

4400 detector stations, 20,000 km² 39 fluorescence telescopes Auger-South (completed) 1600 detector stations, 3,000 km²

1600 detector stations, 3,000 km 24 fluorescence telescopes

Auger-North (planned)

Aim: sources, propagation and interaction of UHECR

1992 Paris workshop1996 Design report(two sites, full sky coverage)

1999 Ground breaking2001 Engineering array2003 Construction phase2008 Auger-South completed

Main physics results:

- Flux suppression similar to GZK effect
- Anisotropy E > 6 10¹⁹ eV
- Acceleration sources favoured
- Mixed/heavy elemental composition
- Tests of hadronic interactions

Southern Pierre Auger Observatory

"Last Friday, June 13th, at 13:00 hs, the "last" surface detector (the one with signatures from the whole Collaboration) was filled with water. It was put to work immediately afterwards."

six telescopes each viewing 30° by 30°

and the second second

six telescopes each viewing 30° by 30°

One of 24 fluorescence telescopes

PMT camera with 440 pixels, 1.5° FoV per pixel, 10 MHz

UV transmitting filter, corrector lens, safety curtain

> 3.4 m segmented mirror (aluminum alloy, glass)

Other types of Auger events

Event 200718905882 (9.7.2007)

Other types of Auger events

Event 200718905882 (9.7.2007)

Other types of Auger events

Event 200718905882 (9.7.2007)

Golden hybrid events: many cross checks possible

Energy spectrum

Constant intensity cut method

$$N_{\rm ev} = \int_{\rm angle} \int_{\rm area} \int_{\rm time} \Phi(E, \theta, \phi) \sin \theta d\theta d\phi \cos \theta dA dt$$

Conversion function independent of S(1000) within statistical uncertainties

$$\frac{\mathrm{d}N_{\mathrm{ev}}}{\mathrm{d}\sin^2\theta}\Big|_{S(1000)>S_{38}f(\theta)} = \mathrm{const.}$$

Energy calibration of surface detector

Signal [VEM]

10³

10²

10

500

Systematic uncertainties of energy assignment

4%

10%

10%

5%

5%

22%

Energy spectrum (surface array and hybrid events)

Some comparisons ...

Energy [eV]

Simulations fail to describe events (i)

Simulations fail to describe events (ii)

Shower-to-shower fluctuations

Different simulations with QGSJET II for same event

Event 1364365, $\theta = 64^{\circ}$, $E = 1.7 \times 10^{19} \text{ eV}$ Xmax proton-like, muon dominated signal

Fluctuations of SD signal smaller than 15%

What about iron primaries ?

Mass composition

Composition: measurement of longitudinal profile

Xmax measurement and composition

Other composition-sensitive variables

Interaction model analysis

Universality method em. component universal muonic contribution: part of signal

Time trace analysis jump method (muon counting) smoothing method (em. component)

Simulation of individual hybrid events

Analysis of data at about 10¹⁹ eV QGSJET II, protons as reference scale

Photon and neutrino limits
Photon limit (fluorescence and surface array data)

Signal rise time 20 Total signal Detector signal (arb. units) 18 16 **Muons** 14 12 10 8 6 **Electrons** 4 2 40 0 20 60 80 100 120 140 160 180 200 Time bins (25 ns) Signal (VEM) 50% 10 ited signal 10% 245 250 time (25ns) t_{1/2} = 81.39 ns

265

Only dependent on simulation of photon showers

Compilation of integral photon limits

Neutrino searches

Apparent signal speed

Compilation of differential and integral limits

AUGER limits	Down 01Nov07-29Feb09	Up 01Jan04-29Feb09
K [GeV cm ⁻² s ⁻¹ sr ⁻¹]	3.2 x 10 ⁻⁷	4.7 x 10 ⁻⁸

Arrival direction distribution

Update of AGN correlation

Period	Exposure	GP	N	k	$k_{ m iso}$	P
I	4390	unmasked	14	9	2.9	
		masked	10	8	2.5	
П	4500	unmasked	13	9	2.7	2×10^{-4}
		masked	11	9	2.8	1×10^{-4}
Ш	8150	unmasked	31	8	6.5	0.33
		masked	24	8	6.0	0.22
	12650	unmasked	44	17	9.2	$6 imes 10^{-3}$
		masked	35	17	8.8	2×10^{-3}
I+II	8890	unmasked	27	18	5.7	
		masked	21	17	5.3	
I+II+III	17040	unmasked	58	26	12.2	
		masked	45	25	11.3	

A posteriori analysis of arrival directions

Example: Swift-BAT, volume limited, 5° smoothing

Parameter optimization

All data used in analysis, including period I

Large scale anisotropy (dipole search)

Energy range	Rayleigh analysis		E-W method			upp.limit [%]	
[EeV]	٢ [%]	S_R[%]	Prob [%]	r _{sid} [%]	S _{EW} [%]	Prob [%]	(99%c.l.)
all enegies				0.48	0.27	19.5	1.05
0.2 - 0.5				0.25	0.43	84.2	1.19
0.5 - 1				1.08	0.44	4.8	2.03
1 – 2	0.90	0.32	1.8	0.77	0.65	49.9	1.59
2 – 4	0.79	0.64	45.8	1.65	1.33	46.3	2.12
4 – 8	0.71	1.33	86.6	5.05	2.73	18.0	3.66
> 8	5.36	2.05	3.3	2.76	4.08	79.5	9.79

Auger ICRC 2009

Enhancements

Transition from galactic to extragalactic sources

Hillas:

- Ankle is transition galactic to extragalactic cosmic rays

- Injection spectrum $dN/dE \sim E^{-2.3}$

Berezinsky et al.:

- Ankle is feature due to
- extragalactic proton propagation
- Injection spectrum $dN/dE \sim E^{-2.7}$

Flux very similar, composition different

Physics motivation: composition

Measurement of flux and composition in ankle region

Current surface detector threshold

(Today: ~1663 SD units in field, 1634 with water, 1567 taking data)

Threshold for array ~10^{18.5} eV Composition dependence

Simulated acceptance

Infill array of water Cherenkov detectors

AMIGA: Auger Muons and Infill for the Ground Array

Shower reconstruction with infill Cherenkov tanks

Examples: simulations for proton and iron showers at 30°

(Medina et al., NIM 566, 2007)

Expected performance of muon detectors

(Supanitsky et al., to be published)

AMIGA scintillator design

MINOS-type scintillators

Multi-anode PMT: 64 pixels (2 x 2 mm²)

Detector station:

2 modules, each 2.6 x 4 m² 2 modules, each 2.6 x 2 m² PVC housing 25 ns, 8 bit electronics area ~ 31.5m²

Extruded polystyrene doped with fluors, 14 pe per passing muon

AMIGA detector layout

Detectors have to have large area for counting

December 2009

December 2009

AMIGA prototype development

HEAT: High Elevation Auger Telescopes

- 3 ``standard'' Auger telescopes tilted to cover 30 60° elevation
- Custom-made metal enclosures
- Also prototype study for northern Auger Observatory

Simulation of HEAT telescopes

Expected performance (i)

Acceptance strongly selection cut dependent, here shown for high quality cuts (mean X_{max})

Expected performance (ii)

Expected performance (iii)

CAD view

Event rates and outlook

High-quality events per year

	Energy threshold	Detector array	Hybrid observation
433m infill	2 10 ¹⁷ eV	~13500	~1500
	5 10 ¹⁷ eV	~2500	~250
750m infill	4 10 ¹⁷ eV	~12000	~1200
	3 10 ¹⁸ eV	~250	~25
I 500m	3 10 ¹⁸ eV I 10 ¹⁹ eV		~500 ~50

Construction plans

- HEAT first telescope in 2008, other two in 2009
- AMIGA prototype cluster (unitary cell) in 2009/2010
- AMIGA infill tanks 750/433m in 2008/2009
- AMIGA muon counters 750/433m in 2011/2012
The northern Pierre Auger Observatory

GZK horizon and magnetic field deflection

Extragalactic magnetic field

Distribution of Galaxies

Capricornus Supercluster

> Capricornus Superclusters Void Pavo-Indus

Supercluster Centaurus Supercluster

Sculptor Superclusters Void Virgo Coma Supercluster

> Perseus-Pisces Supercluster

Horologium

Supercluster Supercluster Sextans Supercluster

Shapley Supercluster

> Ursa Major Supercluster Superclusters

> > $E > 3 \times 10^{19} eV$

Bootes

Superclysters

Bootes Void

Pisces-Cetus

Superclusters

Distribution of Galaxies

Capricornus Supercluster

> Capricornus Superclusters Void

> > Pavo-Indus Supercluster

Sculptor Void

Virgo Coma Supercluster Hydra Perseus-Pisces Supercluster

Supercluster

$E > 6 \times 10^{19} eV$

9 Columba Supercluster

Superclusters Void Shapley Supercluster

> Ursa Major Supercluster Leo Superclusters

Bootes

Sextans Supercluster

Horologium Supercluster

vww.atlasoftheuniverse.con

Pisces-Cetus

Superclusters

Propagation and max. injection energy

Max. injection energy > 10²⁰ eV

Energy loss length

- proton and iron nuclei very similar
- all other nuclei disintegrate very fast

Max. injection energy 10^{19.6} eV

Auger-North detector layout

- Optimized for science and costs
- Surface array with 4000 stations: 20,000 km² with $\sqrt{2}$ -mile = 2.3 km grid
- Infill array with 400 stations:
 2,000 km² with
 1-mile = 1.6 km grid
- **39** fluorescence telescopes

Auger-North detector design (i)

Auger-North detector design (ii)

Distant Laser Facility (DLF):

Aerosol measurement and Raman laser (355 nm, 7 mJ)

Nitrogen Automated Integrated Laser System (NAILS)

AMT 2m² mirror 2 columns of 16 1 degree pixels External Trigger from GPS

Raman LIDAR 355 nm Laser Raman Detector

Physics reach: point sources and source regions

Physics reach: spectrum and composition

100% proton, 75% proton, 25% iron, 25% proton, 75% iron, 10% proton, 90% iron, 100% iron

Physics reach: fundamental and particle physics

Mono- or bi-elemental composition: particle physics at 350 TeV CMS with air showers

Current status and timeline

Science with Auger-North

The sources of UHECR

- Anisotropy \Rightarrow correlations \Rightarrow source classes
- Study individual sources with spectra and composition on the whole sky

The acceleration mechanism

- Composition evolves from source to here
- Proton beam !? calibration !
- E>>10²⁰ eV still difficult; E_{max} ?

Propagation and cosmic structure

- Map galactic B-field
- Matter within 100 Mpc
- Extragalactic B-field small ?

Particle physics at 350 TeV

- Mass and X_{max}
- Had. interactions, cross sections ?
- New physics, Lorentz invariance

Multi-messenger astrophysics

- Combine the data from photons, neutrinos and charged particles !
- Sources within field of view of IceCube

<X_{max}> [g/cm²]

800

750

700

650