

IceTop Energy Reconstruction ... a status report (IceTop-26)

Fabian Kislat

Cosmic Ray Workshop, Zeuthen 02/23/2010

- Lateral Distribution Function
- Energy calculation
 - Unfolding Method
 - Parametric Method
- Systematic Uncertainties

Reconstruction Chain

Lateral Distribution Function

Fabian Kislat - IceTop Air Shower Reconstruction

DESY

- 1. Calculate energy, proton based: $E_{rec}(S_{125}, \theta)$ from MC
- 2. Create proton-based energy spectrum
- 3. Monte Carlo → Energy response: log(E_{rec}/E_{true}) Different primary types
- 4. Use bias, resolution and efficiency to unfold the original spectrum

Parametric Method

- 1. Monte Carlo $\rightarrow E_{rec}(S_{125}, \theta)$ For different primary assumptions
- 2. Get reconstruction efficiency from Monte Carlo
- 3. Create spectra for different composition assumptions (Correct for efficiency)

→ Result: Several Spectra for different composition assumptions

Part I: Energy Calculation

- Use MC to get a relation between
 - S₁₂₅
 - Zenith Angle
 - Primary Energy
- Uses full CORSIKA showers, no real detector simulation
- Use that to create a raw proton-based energy spectrum

Part II: Energy Response

→ Energy Bias -0.5 0.5 () $\log_{10}(E_{rec}/E_{MC})$ Do this for all energies, different primaries, different zenith angles

0.3

0.2

0.1

Fabian Kislat - IceTop Air Shower Reconstruction

Mean Value

Part III: Energy Bias

- Nearly flat above threshold
- Increase below threshold: **Cutoff effect**, only showers that fluctuate upwards trigger 02/23/2010

DESY

Part III: Energy Bias

 \rightarrow Zenith and energy dependent bias

02/23/2010

Part IV: Energy Resolution

- Smaller zenith angle \rightarrow better resolution
- Higher energy \rightarrow better resolution
- Improvement in the threshold region: Cutoff effect, showers that fluctuate downwards do not trigger

02/23/2010

Part V: Efficiency

• Reconstruction efficiency for proton and iron showers:

- Similar efficiency, nearly independent of zenith
- Iron: higher threshold
- Efficiency can be larger than 100% because of migration

02/23/2010

Fabian Kislat - IceTop Air Shower Reconstruction

Part VI: Unfolding Idea

- For every bin there is a distribution $p(E_{rec} | E_{true}, \theta, type)$ \rightarrow Energy response curves: bias, resolution, efficiency
- From the true spectrum *I* to the measured spectrum *S* \rightarrow fold with response matrix $S_i = R_{ii} I_i$
- Unfolding \leftrightarrow Invert $R_{_{ii}}$
- Use Bayesian method to do this G. D'Agostini

Part V

- Automatically corrects for efficiency
- Takes bin-to-bin migration into account
- Used here to account for different primary assumptions
- Problem: when using a different assumption than protons a large shift (bias) needs to be corrected for

Part I: Energy Calculation I

- Simulate CORSIKA showers and full detector
- Create these plots for different
 - zenith ranges
 - primary composition assumptions

02/23/2010

Fabian Kislat - IceTop Air Shower Reconstruction

Parametric Method

Part II: Different Composition Assumptions

- Spacing of iron curves larger \rightarrow stronger attenuation
- Iron curves at larger values \rightarrow smaller shower size

Parametric Method

Part III: Resulting Bias

• Small bias for both proton and iron primaries

 Large, zenith and energy dependent bias when reconstructing with the wrong primary assumption

Parametric Method

Part IV: More thoughts on the bias

- Steep input spectrum $\rightarrow \langle E(S_{125}) \rangle \neq \langle S_{125}(E) \rangle$
- Two ways to average:

 → a) Bias(E_{rec}) ~ 0
 or
 → b) Bias(E_{true}) ~ 0
- Another Problem: Input spectrum will bias final result

Efficiency Calculation

K^{true}/m

400

200

-200

-200

containment criteria

600

800

 X_{true} / m

400

• Events can migrate into or out of contained area $\rightarrow \epsilon > 1$ possible

• Efficiency: $\varepsilon = \frac{\sum_{in,rec} w_i}{\sum_{in,gen} w_i}$

• Error of that:

$$\sigma_{\varepsilon} = \sqrt{\sigma_{\varepsilon_{in}}^2} + \left(\frac{\sum_{out,gen} w_i}{\sum_{in,gen} w_i} \sigma_{\varepsilon_{out}}\right)$$

Poissonian error of the probability that a contained events passes the cuts

Poissonian error of the probability that an outside event remains in the sample

0

200

$$\sigma_{\varepsilon_x} = \sqrt{\varepsilon_x (1 - \varepsilon_x)} \cdot \left(\frac{\sum_{gen, x} w_i^2}{\left(\sum_{gen, x} w_i\right)^2} \right)^{\frac{1}{2}}$$

 $\mathbf{2}$

02/23/2010

Fabian Kislat - IceTop Air Shower Reconstruction

Model Dependency

DESY

- Assumptions in simulation:
 - Interaction model
 - Atmosphere parametrisation
 - Input flux (spectrum)
- Unfolding method:
 - Energy estimator
 - Response matrix: bias, resolution (fluctuations!)
- Parametric method:
 - Energy estimator
 - Simulated spectrum \rightarrow Bias on the result? Migration not corrected.
- Treatment of snow is a major issue (\rightarrow separate discussion)

- Interaction Model
- Atmosphere: deviation from model, short term variations
- Method:
 - Unfolding algorithm, iterations, etc...
 - Parametric method: simulated spectrum
- Snow:
 - Treatment of snow in simulation / reconstruction
 - Unknown / varying snow depth (we only have snow measurements once a year)
- Simulation: saturation, threshold description
- Detector calibration