

Radio detection of cosmic ray air showers with LOPES

DESY Zeuthen, 24 February 2010

Frank Schröder LOPES collaboration

KIT – Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft

Contents

- Introduction into LOPES
- Data acquisition / processing
- Reconstruction capabilities (direction, energy)
- Results based on
 - Beam-forming
 - Individual antennas (lateral distribution)
- Outlook
 - Future developments and analysis

LOPES at KIT Campus North

Energy spectrum

5

LOPES: Layout until 2009

- 30 dipole antennas within KASCADE
- Lateral extension about 200 m
- Polarization
 - 15 east-west
 - 15 north-south
 - 10 Auger prototype antennas
- Now (2010): Tripole antennas

Data Acquisition

- Trigger: KASCADE-Grande
- Frequency Range: 40 80 MHz
- Digital 80 MHz ADC
- Trace length ~ 800 µs
 - good frequency resolution
- Digital data treatment
 - noise suppression
 - amplitude calibration
 - time calibration
 - up-sampling

LOPES antenna

Noise (RFI) Suppression

Amplitude Calibration

Time calibration

Up-Sampling

- Correct interpolation between ADC samples
- Zero padding method (in frequency domain)
- Improved sampling: 12.5 ns \rightarrow up to ~ 0.1 ns

Digital Interferometry

Sourc

Beam-forming

- Shifting time series according to the geometrical delay of the pulse arrival times
- Sum over all antenna traces

e.g. cross-correlation

$$S_{cc}(t) = \pm \sqrt{\left| \frac{1}{N_{pairs}} \sum_{i=1}^{N-1} \sum_{j>i}^{N} f_i(t-\tau_i) f_j(t-\tau_j) \right|}$$

Example Event

- Coherent traces after beam-forming
- Cross-correlation beam height as measure for radio pulse strength

First detection

Angular resolution ~ 1°

Energy Estimation

Field strength: energy, geomagnetic angle, distance

Simple, geo-magnetical, analytical E ~ v x B model

Lateral distribution

- Pulse height in each antenna as function of distance to shower axis
- Selection
 - 110 events from Steffen Nehls' thesis and paper about lateral distribution: Astrop. Ph., 2010, 32, 294
 - LOPES 30, east-west polarization only
 - KASCADE-Grande: high muon or electron number
 - High SNR in cross-correlation beam and each antenna
- Pulse height = maximum amplitude in each antenna close to time of cross correlation beam

Lateral distribution - example

- Fit of exponential function: $\varepsilon = \varepsilon_o \cdot \exp(-R/R_o)$
- Power law overestimates field strength close to core

Energy estimation

• Primary energy ~ field strength ε_o

18 24 February 2010 Frank Schröder, DESY Zeuthen 2010

Comparison to Simulation

- REAS: geo-synchrotron
- Simulated showers:
 - Direction, core + energy from KASCADE-Grande
 - REAS 2: proton showers
 - REAS 3: proton + iron showers
- Simple adaption to detector properties
 - Rectangular filter to LOPES band width
 - Projection of east-west polarization
- Same fitting procedure like for data

Example event

Not for public distribution!

Slope: R₀ histogram

Preliminary, be careful with any conclusions!

Not for public distribution!

Slope: R₀ versus R_{mean}

Outlook – Lateral Distribution

Some checks + improvements already done:

- Calculation of pulse height
- Dispersion of filters: pulse broadening
- Frequency band, by using sub-bands
- \rightarrow Little effects to slope and height
- Checks to do:
 - Influence of noise
 - Fitting conditions (e.g., distance of fitting ε)
 - Taking into account all experimental properties when comparing to simulations

LOPESSTAR

- STAR = Self Triggered Array of Radio Detectors
- Developments for the Auger Engineering Radio Array
 - Self trigger
 - Electronics
 - Antennas

Now: Reconfiguration to 10 tripole antennas

- 3 dipoles at each position
- Reconstruction of E-Field vector
- Analysis topics
 - Systematics, Efficiencies
 - Polarization
 - Mass sensitivity
 - Lateral distribution
- Thunderstorms

Summary

- LOPES = digital radio interferometer for cosmic rays
- Requires advanced signal processing + calibration
- Measurement of direction, energy and maybe mass
- Results support geomagnetic emission mechanism
 - Details unknown, but…
 - REAS 3 simulations close to data
- Increasing understanding and capabilities of radio detection of cosmic ray air showers in the last years!