KASCADE-Grande I) Reconstruction Techniques & Accuracies

Karl-Heinz Kampert University Wuppertal Largely based on paper subm to NIM

Outline

- brief reminder about basic properties of KASCADE and KASCADE-Grande
- triggers
- calibration
- from energy to particle numbers
- reconstruction method
- reconstruction efficiencies

(Karlsruhe Shower Core and Array Detector)

~5·10¹⁴ - ~5· 10¹⁶ eV

closed down 2009 Nucl. Instr. Meth. A513 (2003) 490

e & µ Measurements in KASCADE

Muon Tracking in KASCADE

150 m² muon tracking 500 m² streamer tubes

Measurements of muon production height,
 more info on composition and on hadronic interactions

KASCADE-Grande = KArlsruhe Shower Core and Array DEtector + Grande and LOPES

Measurements of EAS in the energy range $E_0 = 100 \text{ TeV} - 1 \text{ EeV}$

KA-Grande Layout

Some Numbers:

- ~ 0.5 km² area
- 252 stations of 3.2 m^2 N_e & N_µ-counting
- 37 stations of 10 m² N_{ch}-counting
- ~ 1000 m² µ-counting
 @ partial tracking
- hadron calorimetry

Triggers

KASCADE

- em-station multiplicity > 15/60 (inner stations)
 > 10/32 (outer stations)
- fully eff. @ E>8·10¹⁴ eV
- external trg. from Piccolo and from Grande 7/7

Piccolo

- provide fast trigger to KASCADE for showers landing in Grande area
- multiplicity of $\geq 2/8$ stations
- fully eff. @ E>10¹⁶ eV

Grande

- arranged in 18 trigger clusters of 6+1 stations
- internal trigger by multiplicity within a trigger cluster > 4/7 (5 Hz)
- external trigger by KASCADE (see above, 3.5 Hz)

KA-Grande in Numbers

Detector	Particle	Area (m^2)	Threshold
Grande array (plastic scintillators)	charged	370	$3 { m MeV}$
Piccolo array (plastic scintillators)	charged	80	$3 { m MeV}$
KASCADE array (liquid scint.)	e/γ	490	$5 { m MeV}$
KASCADE array (shielded pl. scint.)	μ	622	$230 { m ~MeV}$
Muon tracking det. MTD (streamer tubes)	μ	3×128	$800 { m MeV}$
Multi wire proportional chambers at CD	μ	2×129	$2.4 \mathrm{GeV}$
Limited streamer tubes at CD	μ	250	$2.4 \mathrm{GeV}$
Calorimeter at CD	h	9×304	$10-50 { m GeV}$

Calibration

detect mip-peak during data taking in high-gain channel for each single PMT

Grande station (16 scint. mod.)

cross calibration of Low- and High-gain channels in pulser runs

Karl-Heinz Kampert

Station Electronics

Verfication of Calibration

Cross Check: KASCADE-vs-Grande

and with EAS simulations + det. MC

From E-deposit to Particle Numbers

1st step: energy deposit \rightarrow # of crossing EAS particles

conversion done by **Lateral Energy Correction Function (LECF)** determined from CORSIKA + Geant based Detect. MC

 $LECF(r) = \Delta E(r)/n_{ch}$

accounts for energy dependence of stopping power and energy release from photons and from secondary particles in surroundings

LECF (Grande Stations)

Arrival Directions

 χ^2 minimization of arrival times between Grande stations and CORSIKA showers yields shower front parameters

shower front:

$$\overline{t} = 2.43 \cdot (1 + \frac{r}{30 \text{ m}})^{1.55} \text{ ns} \qquad \sigma_{\overline{t}} = 1.43 \cdot (1 + \frac{r}{30 \text{ m}})^{1.39} \text{ ns.}$$

Uncertainty of timing measurement:

$$\sigma_t = \sqrt{\sigma_{\tau,instr}^2 + \frac{\sigma_{\overline{t}}^2}{N}}$$

$$\chi_t^2 = \sum_i \frac{(t_{meas,i} - t_0(\overline{r_{axis}}, \overline{\theta}) - (z_i - z_0(\overline{r_{axis}}, \overline{\theta}))/c - t_{1,i}(r))^2}{\sigma_t(r)^2}$$

Core Location, Age, Shower-Size

Maximum Likelihood: measured particle density compared to modified NKG function

$$\rho_{ch}(r) = N_{ch} \cdot f_{ch}(r) = N_{ch} \cdot C(s) \left(\frac{r}{r_0}\right)^{s-\alpha} \left(1 + \frac{r}{r_0}\right)^{s-\beta}$$
$$C(s) = \Gamma(\beta - s)/(2\pi r_0^2 \cdot \Gamma(s - \alpha + 2) \cdot \Gamma(\alpha + \beta - 2s - 2))$$

 α =1.6, β =3.4, r_0 =30 m

 N_i : measured no. of particles in station n_i : expected no. of particles in station iKarl-Heinz Kampert Zeuthen Workshop Feb. 2010

Iterative Procedure

- (1) The shower parameters are estimated analytically.
- (2) The core position is moved over a 7×7 grid with 8 m spacing. In each position s and N_{ch} are fitted and the position providing the minimum χ^2 is chosen as starting point.
- (3) The arrival direction is reconstructed by the time fit.
- (4) The lateral distribution of charged particles is fitted using $\rho_{ch}(r)$ with N_{ch} and s as free parameters.
- (5) The lateral distribution fit is performed with free parameters x_c and y_c .
- (6) Step 3 and 4 are repeated to obtain the final values for the arrival direction, N_{ch} and s.
- (7) N_{μ} is obtained (see Daniel Fuhrmann's talk)

Event Selection Cuts

1) highest energy deposit in central station of hexagon

- 2) \geq 12 stations with valid TDC signal
- 3) N_{ch}(detected) / N_{ch}(total) above a certain threshold
- 4) zenith angle $\leq 40^{\circ}$
- 5) core in central fiducial area of 470 x 380 m²

LDF of charged particles

Trigger & Reconstr. Efficiency

Fully efficient above $log(N_{ch})=5.8$ and 10^{16} eV

Reconstruction Accuracies

- Analyze uncertainty of fit parameters
- Compare Data to MC
- Compare reconstructed parameters of KASCADE and KASCADE-Grande in region of overlap, i.e. $5.8 \le N_{ch} \le 7.2$ and core location in green area Ξ^{150}

(few % of events)

KASCADE sampling fraction \approx 15 times higher than in Grande, i.e. KASCADE can serve as reference (number are: 1.2.10-2 vs 7.5.10⁻⁴)

Example of Combined Event

KASCADE-Grande: Karlsruhe Shower Core and Array Detector - Grande

Core Location

resolution ~ 5-8 m

Arrival Direction

resolution ~ 0.8°

Comparison of Shower Size

Nch, Nµ, Nem

Physics analysis of KASCADE-Grande uses (at present)

• N_{ch}

- core position, and
- direction from Grande (this talk)
- N_µ from KASCADE (see Daniel's talk)
- N_e (if needed) from $\rho_{ch}(r) \rho_{\mu}(r)$

KASCADE-Grande II) Energy spectra from Unfolding

Largely based on PhD Thesis of Holger Ulrich

Electron-Shower Size at different altitudes...

 $E = 10^{15} eV$

IceCube

Zeuthen Workshop Feb. 2010

Electron-Shower Size at different altitudes...

E=10¹⁵ eV

IceCube

KASCADE

31

Near the shower maximum p and Fe showers yield similar electron numbers → bad for composition !

> excellent position (for GeV µ`s)

> some suffering from fluctuations

Electron & muon counting $\Rightarrow E_{prim}$

Karl-Heinz Kampert

Zeuthen Workshop Feb. 2010

Consequence: all experimental distributions are affected;

e.g.: N_e-distr. for dJ/dE~E ^{-2.78} at sea-level

Consequence: all experimental distributions are affected;

e.g.: N_e -distr. for dJ/dE~E ^{-2.78} at sea-level

Note:

Spectrum steepens
 because of smaller fluctuations
 at higher energies

observed all-particle distr.
 biased towards protons,
 particularly at low energies

$(N_e, N_\mu) \Leftrightarrow (Energy, Mass)$

CORSIKA Simulations

Data

No. of events N_i in each cell of 2D-Histo results from different primaries of various energies, i.e. each cell contains info about primary energy spectra:

 $N_{i} = 2\pi A_{s}T_{m} \sum_{A=1}^{N_{A}} \int_{0^{\circ}}^{18^{\circ}} \int_{-\infty}^{+\infty} \frac{dJ_{A}}{d\lg E} \xrightarrow{A_{s}: \text{ sampling area}} T_{m}: \text{ measurement time}$ $\times p_{A}((\lg N_{e}, \lg N_{\mu}^{tr})_{i} | \lg E) \xleftarrow{\text{conditional probability to}}$ $\times \sin \theta \cos \theta d\lg E d\theta \xrightarrow{\text{conditional probability to}} P_{e} \text{ and } N_{\mu} \text{ from}$ primary of mass A & energy E

Note, p_A is an integral itself: $p_A = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} s_A \epsilon_A r_A d \lg N_e^{\text{true}} d \lg N_{\mu}^{\text{tr,true}}$

$$N_{i} = 2\pi A_{s}T_{m} \sum_{A=1}^{N_{A}} \int_{0^{\circ}}^{18^{\circ}} \int_{-\infty}^{+\infty} \frac{dJ_{A}}{d \lg E}$$

$$\times p_{A}((\lg N_{e}, \lg N_{\mu}^{tr})_{i} | \lg E)$$

$$\times \sin \theta \cos \theta d \lg E d\theta$$

$$A_{s}: \text{ sampling area} \\T_{m}: \text{ measurement time} \\primary E-spectra \\conditional probability to \\measure N_{e} \text{ and } N_{\mu} \text{ from} \\primary of mass A \& \text{ energy E} \end{cases}$$

Note,
$$p_A$$
 is an integral itself: $p_A = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} s_A \epsilon_A r_A d \lg N_e^{\text{true}} d \lg N_{\mu}^{\text{tr,true}}$

$$s_{A} = s_{A}(\lg N_{e}^{true}, \lg N_{u}^{tr,true} | \lg E)$$

$$\epsilon_{A} = \epsilon_{A}(\lg N_{e}^{true}, \lg N_{\mu}^{tr,true})$$

$$\epsilon_{A} = \epsilon_{A}(\lg N_{e}^{true}, \lg N_{\mu}^{tr,true})$$

$$\epsilon_{A} = r_{A}((\lg N_{e}, \lg N_{\mu}^{tr})_{i} | \lg N_{e}^{true}, \lg N_{\mu}^{tr,true})$$

$$\epsilon_{A} \text{ and } r_{A} \text{ do not depend on zenith angle}$$

$$e_{A} = r_{A}((\lg N_{e}, \lg N_{\mu}^{tr})_{i} | \lg N_{e}^{true}, \lg N_{\mu}^{tr,true})$$

$$\epsilon_{A} \text{ and } r_{A} \text{ do not depend on zenith angle}$$

$$e_{A} = r_{A}((\lg N_{e}, \lg N_{\mu}^{tr})_{i} | \lg N_{e}^{true}, \lg N_{\mu}^{tr,true})$$

$$e_{A} \text{ and } r_{A} \text{ do not depend on zenith angle}$$

$$e_{A} = r_{A}((\lg N_{e}, \lg N_{\mu}^{tr})_{i} | \lg N_{e}^{true}, \lg N_{\mu}^{tr,true})$$

$$e_{A} \text{ and } r_{A} \text{ do not depend on zenith angle}$$

$$e_{A} = r_{A}((\lg N_{e}, \lg N_{\mu}^{tr})_{i} | \lg N_{e}^{true}, \lg N_{\mu}^{tr,true})$$

$$e_{A} \text{ and } r_{A} \text{ do not depend on zenith angle}$$

$$e_{A} = r_{A}((\lg N_{e}, \lg N_{\mu}^{tr})_{i} | \lg N_{e}^{true}, \lg N_{\mu}^{tr,true})$$

$$e_{A} \text{ and } r_{A} \text{ do not depend on zenith angle}$$

$$e_{A} = r_{A}(r_{A} \text{ do not depend on zenith angle}$$

$$e_{A} \text{ and } r_{A} \text{ do not depend on zenith angle}$$

$$e_{A} \text{ describes properties of reconstr. procedure,$$

$$e_{A} \text{ do not depend on zenith angle}$$

I.e.: 2D-Histo can be understood as system of coupled integral eqns

Karl-Heinz Kampert

$$N_{i} = 2\pi A_{s} T_{m} \sum_{A=1}^{N_{A}} \int_{0^{\circ}}^{18^{\circ}} \int_{-\infty}^{+\infty} \frac{\mathrm{d}J_{A}}{\mathrm{d} \, \mathrm{lg} \, E}$$

 $\times p_A((\lg N_{\rm e}, \lg N_{\mu}^{\rm tr})_i | \lg E)$

 $N_i = \sum_{i=1}^{N_A} \sum_{j=1}^{n} R^A_{ij} x^A_j$

A=1 i=

 $\times \sin\theta\cos\theta d\lg E d\theta$

$$\square \searrow \qquad N_i = A_{\rm s} T_{\rm m} \Delta \Omega \sum_{A=1}^{N_A} \int_{-\infty}^{+\infty} \frac{\mathrm{d}J_A}{\mathrm{d} \, \lg E} \\ \times p_A ((\lg N_{\rm e}, \lg N_{\mu}^{\rm tr})_i | \lg E) \mathrm{d} \, \lg E$$

the integral written as sum over n energy intervals

$$\square \searrow \qquad N_i = \sum_{A=1}^{N_A} \sum_{j=1}^n R_{ij}^A x_j^A$$

the integral written as sum over n energy intervals

with
$$x_j^A = A_s T_m \Delta \Omega \int_{\lg E_j}^{\lg E_j + \Delta \lg E} \frac{\mathrm{d}J_A}{\mathrm{d}\lg E} \mathrm{d}\lg E$$

and $R_{ij}^A = \frac{\int_{\lg E_j}^{\lg E_j + \Delta \lg E} \frac{\mathrm{d}J_A}{\mathrm{d}\lg E} p_A((\lg N_e, \lg N_{\mu}^{\mathrm{tr}})_i | \lg E) \mathrm{d}\lg E}{\int_{\lg E_j}^{\lg E_j + \Delta \lg E} \frac{\mathrm{d}J_A}{\mathrm{d}\lg E} \mathrm{d}\lg E}$

as matrix eq. $\overrightarrow{Y} = \sum_{A=1}^{N_A} \mathbf{R}^A \vec{X^A} \text{ with } \vec{X^A} = \begin{pmatrix} x_1^A \\ x_2^A \\ \vdots \end{pmatrix} \text{ and } \vec{Y} = \begin{pmatrix} N_1 \\ N_2 \\ \vdots \end{pmatrix}$

as matrix eq.

$$\overrightarrow{Y} = \sum_{A=1}^{N_A} \mathbf{R}^A \vec{X^A} \text{ with } \vec{X^A} = \begin{pmatrix} x_1^A \\ x_2^A \\ \vdots \end{pmatrix} \text{ and } \vec{Y} = \begin{pmatrix} N_1 \\ N_2 \\ \vdots \end{pmatrix}$$

even more compact writing: $\vec{Y} = \mathbf{R}\vec{X}$ with $\mathbf{R} = (\mathbf{R}^1 \ \mathbf{R}^2 \ \cdots)$ and $\vec{X} = \begin{pmatrix} \vec{X}^1 \\ \vec{X}^2 \\ \vdots \end{pmatrix}$ $\mathbf{R}^1, \mathbf{R}^2, \ldots$: response matrices of different primary mass groups $\vec{X} = \begin{pmatrix} \vec{X}^1 \\ \vec{X}^2 \\ \vdots \end{pmatrix}$ represents prim. energy spectra

5.5

4.5

5.5

 $\lg N_{\mu}^{tr^{6.5}}$

6

Determination of Transfer Matrix

- We have chosen to simulated large no. of CORSIKA showers with fixed primary energies including full detector MC and event reconstruction algorithms.
- Obtained distributions have been parametrized with ,appropriate' fit-functions

0.5 PeV protons (QGSJet)

Determination of Transfer Matrix

energy dependence of fit-parameters, e.g.:

Determination of Transfer Matrix

correction of mass dependent systematic reconstruction offsets in N_e

Solving the Matrix Equation

Gold Algorithm to find \vec{X} from $\vec{Y} = \mathbf{R}\vec{X}$

iterative procedure, requires modified \overrightarrow{Y}_{mod} and Response Matrix $\widetilde{\mathbf{R}}$, defined via diagonal matrix \mathbf{C} containing statistical uncertainties of data

$$\widetilde{\mathbf{R}} = \mathbf{R}^{\mathrm{T}}\mathbf{C}\mathbf{C}\mathbf{R}$$
 and $\vec{Y}_{\mathrm{mod}} = \mathbf{R}^{\mathrm{T}}\mathbf{C}\mathbf{C}\vec{Y}$
yielding $\widetilde{\mathbf{R}}\vec{X} = \vec{Y}_{\mathrm{mod}}$

the estimated solution x_i in the k^{th} iteration reads:

$$x_i^{k+1} = \frac{x_i^k y_{\text{mod},i}}{\sum_{j=1}^n \widetilde{R}_{ij} x_j^k}$$

stopping criterion: minimize weighted mean square error (WMSE)

Bayesian based unfolding very similar

Stopping Criterion

Test of Method

Use artificial input energy spectra

- → generate N_{μ} -vs- N_{e} plot
- → do unfolding to reproduce input spectra

Comparing different Unfoldings

no significant differences between methods

Estimation of syst. Uncertainties

modify fit function or parameters of fit function to N_e and N_{μ} and redo unfolding:

How Many Mass Groups to Reconstruct ?

Karl-Heinz Kampert

Comments/Summary

- two observables needed to reconstruct E & M by unfolding techniques
- good resolution & small fluctuations help a lot
- KASCADE: systematic uncertainties dominated by EAS simulations, not by data !
- 3 or more observables: unfolding technically possible, but highly complex
 - may be better to combine observables again and reduce to two
- event-by-event mass estimator only allows analysis of <A> as a fct of E, which is rather insensitive to tests of astrophysical models...
- but useful, e.g. for CR astronomy

? E/Z or E/A ?

? E/Z or E/A ?

