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Outline

‣ brief reminder about basic properties of 
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‣ from energy to particle numbers

‣ reconstruction method
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( Karlsruhe Shower Core and Array Detector )

 electron & muon identification

Nucl. Instr. Meth.
A513 (2003) 490

~5·1014 - ~5· 1016 eV closed down 2009
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e & µ Measurements in KASCADE
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	 ➥	 High quality electron and muon
     measurements
  ➥   Energy spectrum, composition,
   anisotropy studies
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Muon Tracking in KASCADE
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	 ➥	 Measurements of  muon production height,
   ➥   more info on composition and on hadronic interactions

150 m2 muon tracking
500 m2 streamer tubes
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Measurements of EAS in the energy range  E0 = 100 TeV -  1 EeV

KASCADE-Grande
= KArlsruhe Shower Core and Array DEtector + Grande

and LOPES
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KA-Grande Layout
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Some Numbers:
• ~ 0.5 km2 area
• 252 stations of 3.2 m2

   Ne & Nµ-counting
• 37 stations of 10 m2

   Nch-counting
• ~ 1000 m2 µ-counting
 @ partial tracking
• hadron calorimetry
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Triggers
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KASCADE
• em-station multiplicity > 15/60 (inner stations)
          > 10/32 (outer stations)
• fully eff. @ E>8·1014 eV
• external trg. from Piccolo and from Grande 7/7

Piccolo
• provide fast trigger to KASCADE for showers 
landing in Grande area
• multiplicity of ≥ 2/8 stations
• fully eff. @ E>1016 eV

Grande
• arranged in 18 trigger clusters of 6+1 stations
• internal trigger by multiplicity within a trigger cluster > 4/7 (5 Hz)
• external trigger by KASCADE (see above, 3.5 Hz)
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KA-Grande in Numbers
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assembling EAS-TOP [7] detectors, and of Piccolo, a smaller array providing78

a fast trigger to all components.79

The KASCADE-Grande detectors and their main characteristics are listed in80

table 1 and their layout is shown in Fig. 2. The central detector with its hadron81

calorimeter and its muon detection devices is described in references [8,9,10].82

Detector Particle Area (m2) Threshold

Grande array (plastic scintillators) charged 370 3 MeV

Piccolo array (plastic scintillators) charged 80 3 MeV

KASCADE array (liquid scint.) e/γ 490 5 MeV

KASCADE array (shielded pl. scint.) µ 622 230 MeV

Muon tracking det. MTD (streamer tubes) µ 3×128 800 MeV

Multi wire proportional chambers at CD µ 2×129 2.4 GeV

Limited streamer tubes at CD µ 250 2.4 GeV

Calorimeter at CD h 9 × 304 10-50 GeV

Table 1
The KASCADE-Grande detectors, their total sensitive area and threshold energy
for vertically incident particles.
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Fig. 2. The layout of the KASCADE-Grande experiment.
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Calibration
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Station Electronics

11
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Verfication of Calibration
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Data

Simulations

Station 18

Station 23

Station 34

matching of mip-distributions of 
individual stations

integral particle density spectra of 
single station: data vs MC

good agreement between data & MC
(differences  originate from geometry)

~ 10% accuracy
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Cross Check: KASCADE-vs-Grande

13

]2lg(E.Dep.) in KASCADE det. [Mev/m
1.5 2 2.5 3 3.5 4

]2
lg

(E
.D

ep
.) 

in
 G

ra
nd

e 
de

t. 
[M

eV
/m

1.5

2

2.5

3

3.5

4
data

simulations

Good agreement between KASCADE and Grande stations
and with  EAS simulations + det. MC



Karl-Heinz Kampert Zeuthen Workshop Feb. 2010

From E-deposit to Particle Numbers

1st step: energy deposit ➙ # of crossing EAS particles
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conversion done by
Lateral Energy Correction Function (LECF)
determined from CORSIKA + Geant based Detect. MC

LECF(r) = ΔE(r)/nch

accounts for energy dependence of stopping power and 
energy release from photons and from secondary particles 
in surroundings
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LECF (Grande Stations)

15

distance from shower axis [m]
0 100 200 300 400 500 600 700 800

en
er

gy
 d

ep
os

it 
/c

ha
rg

ed
 p

ar
tic

le
 [M

ev
]

7.5

8

8.5

9

9.5

10

10.5

muons, respectively are taken into account. The expression of this correction347

function is given by Fig. 17 and348

LECF (r) =





e(1−0.1·r) + 7.51 + 0.02 · r + 5.5 · 10−5 r2 + 5.4 · 10−8r3 , r ≤ 450

LECF (450) , r > 450
(1)349

where r is measured in meter and the LECF is given in MeV energy loss per350

charged particle. The constant value above 450 m core distance corresponds351

to the mean energy deposit of a vertical incident muon. Slight effects due to352

the dependency on the total shower size is neglected.353
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Fig. 17. Lateral Energy Correction Function (LECF) describing the average energy
loss per charged particle in the Grande detectors as a function of core distance.

4.2 Arrival directions354

The EAS arrival direction is obtained by χ2 minimization of the arrival times
measured by the Grande stations with the expected ones from the shower front
structure. Stations with TDC counts differing more than 3µs from a assumed
plane shower front are considered as uncorrelated, non-shower particles and
are discarded from the fit. The theoretical shower front and its time spread
have been obtained from CORSIKA simulations assuming primary protons at
1017 eV and a zenith angle of 22◦. It can be described by

t = 2.43 · (1 +
r

30m
)1.55 ns

with r being the distance to the shower core and

σt = 1.43 · (1 +
r

30 m
)1.39 ns.

18
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Arrival Directions

χ2 minimization of arrival times
between Grande stations and CORSIKA showers yields 
shower front parameters
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measured by the Grande stations with the expected ones from the shower front
structure. Stations with TDC counts differing more than 3µs from a assumed
plane shower front are considered as uncorrelated, non-shower particles and
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4.2 Arrival directions354

The EAS arrival direction is obtained by χ2 minimization of the arrival times
measured by the Grande stations with the expected ones from the shower front
structure. Stations with TDC counts differing more than 3µs from a assumed
plane shower front are considered as uncorrelated, non-shower particles and
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The arrival time of the first particle (i.e. the shower front as recorded by
the double threshold discriminators) and its fluctuations have been shown
to behave approximately as: t1 = t/

√
N and σt1 = σt/

√
N . Therefore, the

uncertainty on the timing measurement can be estimated given by:

σt =

√

σ2
τ,instr +

σ2
t

N

where στ,instr ≈ 2 ns is the timing accuracy of the detectors (see sect. 3.2).
The χ2 minimization is performed over the function:

χ2
t =

∑

i

(tmeas,i − t0(raxis, θ) − (zi − z0(raxis, θ))/c − t1,i(r))2

σt(r)2

where raxis and θ represent the shower axis coordinates with raxis being ob-355

tained from a previous fitting of core position, tmeas,i is the time measurement356

in each station, i, (zi − z0(raxis, θ))/c is the time delay with respect to an357

imaginary shower plane perpendicular to the shower axis at its crossing of the358

ground at time t0(raxis, θ)), and t1,i(r) is the discussed shape of the theoretical359

shower front.360

4.3 Charged particle lateral distribution and fitting procedure361

Core location, slope of lateral distribution function (’age’ s) and shower size362

(Nch) are calculated by means of a maximum likelihood procedure comparing363

the measured number of particles with the one expected from a modified NKG364

lateral distribution function [12] of charged particles in EAS,365

ρch(r) = Nch · fch(r) = Nch · C(s)
(

r

r0

)s−α (
1 +

r

r0

)s−β

(2)366

where Nch is the total number of charged particles at observation level, s is the367

slope of the lateral distribution and r is the distance from the shower core. The368

normalization factor is C(s) = Γ(β−s)/(2πr2
0 ·Γ(s−α+2) ·Γ(α+β−2s−2)).369

The values of the parameters α = 1.6, β = 3.4 and r0 = 30m are obtained by370

CORSIKA simulations including the simulations of the detector response [15].371

The maximum likelihood function is defined as

L =
∏

i

nNi
i e−ni

Ni!

∏

i

1√
2πσi

e
−(Ni−ni)

2

2σ2
i

∏

i

∞∫

Ni

1√
2πσi

e
−(N−ni)

2

2σ2
i dN

where Ni is the number of particles measured in station i while ni is the ex-372

pected one. The first term in the maximum likelihood expression is used for373
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shower front:

Uncertainty of timing measurement:
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Core Location, Age, Shower-Size

Maximum Likelihood: measured particle density 
compared to modified NKG function

17
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α=1.6, β=3.4, r0=30 m
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Ni: measured no. of particles in station ni: expected no. of particles in station i

Ni < 10 Ni ≥ 10 used for saturated stations
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Iterative Procedure
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stations with number of particles detected Ni < 10, the second one is for those374

stations with Ni ≥ 10 (for these stations the uncertainty of the expected num-375

ber of particles is calculated using the expression described in the previous376

sections), and the third term is used for saturated stations, giving the proba-377

bility of measuring a number of particles greater than the one corresponding378

to the saturation level.379

All active stations are used in the fitting procedure. For stations having a valid380

TDC measurement, the number of particles is derived from the energy deposit381

with the previously described procedure. For the other stations the number382

of particles is set to zero because the signal was lower than the threshold383

corresponding to 1/3 m.i.p.384

The fit is performed following an iterative procedure:385

(1) The shower parameters are estimated analytically.386

(2) The core position is moved over a 7 × 7 grid with 8m spacing. In each387

position s and Nch are fitted and the position providing the minimum χ2
388

is chosen as starting point.389

(3) The arrival direction is reconstructed by the time fit.390

(4) The lateral distribution of charged particles is fitted using Expr. 2 with391

Nch and s as free parameters.392

(5) The lateral distribution fit is performed with free parameters xc and yc.393

(6) Step 3 and 4 are repeated to obtain the final values for the arrival direc-394

tion, Nch and s.395

(7) Nµ is obtained (see next section).396

Events are selected for further analysis if they fulfill the following conditions:397

a) the highest energy deposit is recorded by a central detector of a trigger398

hexagon, b) at least 12 stations are fired (i.e. provide a valid TDC-count), c)399

the ratio between the detected and the total reconstructed number of particles400

is above a given threshold. The following discussion will concentrate on events401

with zenith angle θ < 400 and with the reconstructed shower core inside a402

central fiducial area of 470 × 380m2 around the center of the Grande array.403

In Fig. 18 the experimental mean lateral distributions for vertical showers404

(θ ≤ 18◦) and for different shower sizes in the range 6.0 < lg(Nch) < 8.0 are405

shown. The lines represent the lateral distribution functions with mean Nch406

and s-parameter values of the corresponding Nch bin. The lateral distributions407

measured by the Grande array extend up to more than 700 m and the used408

lateral distribution function represents the data well over the whole range.409
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ρch(r)    

(see Daniel Fuhrmann‘s talk)
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Event Selection Cuts

1) highest energy deposit in central station of hexagon
2) ≥ 12 stations with valid TDC signal
3) Nch(detected) / Nch(total) above a certain threshold
4) zenith angle ≤ 40°
5) core in central fiducial area of 470 x 380 m2

19
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LDF of charged particles

20
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Trigger & Reconstr. Efficiency
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Reconstruction Accuracies

• Analyze uncertainty of fit parameters
• Compare Data to MC
• Compare reconstructed parameters of
   KASCADE and KASCADE-Grande in region of overlap, i.e.
   5.8 ≤ Nch ≤ 7.2
   and core location in green area
   (few % of events)

22

X [m]
-200 -150 -100 -50 0 50 100 150

Y
 [m

]

-200

-150

-100

-50

0

50

100

150

Fig. 21. The event selection for the comparison of Grande and KASCADE data, the
green dots are the core positions of some selected events.

This procedure is justified since the detector sampling fraction for EAS de-467

tected within KASCADE is about 15 times larger than in Grande. Therefore,468

the resolutions in KASCADE are expected to be much better than in Grande469

so that the reconstructed observables may be regarded as “reference” ones in470

the comparison between the two arrays. In any case, since these results are the471

convolution of Grande and KASCADE accuracies, they are considered upper472

limits for the Grande array.473

The core position accuracy is derived from the core differences distribution:

δr =
√

(xG − xK)2 + (yG − yK)2

where xG(yG) and xK(yK) are the x (y)-coordinates of the reconstructed core474

positions for Grande and KASCADE reconstruction, respectively. The reso-475

lution is defined by the condition that 68% of the events have a deviation476

less than it. The core differences distribution and the dependence of the core477

location accuracy with the shower size are shown in Fig. 22. Over the range of478

sensitivity of the Grande array, the accuracy improves from 8 to 5m.479

The arrival direction accuracy is obtained from the distribution of the an-
gle between KASCADE and Grande reconstructed arrival directions, being
defined by 68% of the events having deviations less than it.

δα = arccos(cos(θK) · cos(θG) + sin(θK) · sin(θG) · cos(φK − φG))

The angle distribution and the evolution of the accuracy vs shower size are480

shown in Fig. 23. The accuracy has a small dependence on the shower size Nch,481

with a minimum at about Nch ≈ 106.4 but is basically constant at 0.8 degrees.482

The total number of charged particles (Nch) reconstructed by KASCADE and483

24

KASCADE sampling fraction ≈ 15 times higher 
than in Grande, i.e. KASCADE can serve as 
reference
(number are: 1.2·10-2 vs 7.5·10-4)
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Example of Combined Event
KASCADE-Grande: Karlsruhe Shower Core and Array Detector - Grande

EAS as seen by
KASCADE &
       KASCADE-Grande

electron
densities

electron
arrival
times

muon
densities

muon
arrival
times

particle
densities

arrival
times



Karl-Heinz Kampert – KASCADE-Grande Collaboration24

KASCADE-Grande :
Single event reconstruction
a  single event measured by KASCADE-Grande: 
core (-155,- 401) m
log10(Nch) = 7.0
log10(Nµ) = 5.7
No saturation
Zenith = 24.2°
Azimuth = 284°
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Core Location
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Arrival Direction
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Comparison of Shower Size
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Nch, Nµ, Ne...

Physics analysis of KASCADE-Grande uses (at present)

• Nch  
• core position, and
• direction from Grande (this talk)

• Nµ from KASCADE (see Daniel‘s talk)

• Ne (if needed) from ρch(r) – ρµ(r)

28



KASCADE-Grande
     II) Energy spectra from  
               Unfolding

Largely based on
PhD Thesis of Holger Ulrich
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KASCADE

E=1015 eV

Electron-Shower Size 
at different altitudes…

IceCube
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E=1015 eV

Electron-Shower Size 
at different altitudes…

Near the shower maximum
p and Fe showers yield
similar electron numbers
➩ bad for composition !

KASCADE

IceCube
excellent position
(for GeV µ‘s)

some suffering 
from fluctuations
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Electron & muon counting  Eprim

Ne

Nµ

p Fe
Relations
depend on
Energy & Mass !!
and atm. depth

less

fluctuations
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Consequence:

all experimental
distributions are
affected;

e.g.: Ne-distr.
for dJ/dE~E -2.78

at sea-level 
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Consequence:

all experimental
distributions are
affected;

e.g.: Ne-distr.
for dJ/dE~E -2.78

at sea-level 

Note:

• Spectrum steepens
because of smaller fluctuations
at higher energies

• observed all-particle distr.
biased towards protons,
particularly at low energies
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CORSIKA Simulations

En
erg

yM
ass

log E (GeV) = 1.98 + 1.08·log(N!) + 0.037·log(Ne)

Electron & muon counting  Eprim ,Aprim

 Simple principal
 component analysis
 not good enough !
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Data

( Ne , Nµ )  (Energy , Mass)

CORSIKA Simulations

Ne

Nµ

3 Pe
V

100 Pe
V

2-dim Ne-Nµ distribution
 system of

coupled Fredholm-Equations

Islands of
fixed E & M

36
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2D-Histo as coupled Integral Eqns
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No. of events Ni in each cell of 
2D-Histo results from different 
primaries of various energies, i.e. 
each cell contains info about 
primary energy spectra:

0.2 < s < 2.1. Values larger or smaller corre-
spond to poorly reconstructed showers which
are mostly small but may be reconstructed with
large shower sizes [21].

• Only measurement runs with all clusters active
are considered. Missing clusters during mea-
surement strongly influence the measurement
and reconstruction thresholds.

• To avoid threshold effects only showers with
showers sizes lgNe P 4.8 and lgN tr

l P 3.6 are
included.

The total number of events remaining after these
cuts amounts to 6.9 · 105 and the effective mea-
surement time adds up to 900 days. This rather
small number of remaining showers is due to the
severe cuts applied in order to guarantee a high
data quality. As will be seen in the following, the
remaining statistical base is sufficient and not the
limiting factor for the reliability of the results.

3. Outline of the analysis

Starting point of the analysis is the two-dimen-
sional shower size spectrum and the contents
(number of events) of the histogram cells displayed
in Fig. 2. In the following each cell of the shower
size spectrum is labeled by a single index i for iden-
tification. The number of events in each cell i re-
sults from the superposition of contributions
induced by different primary particles with various

energies. In this sense information about the pri-
mary energy spectra of all particle types is present
in each cell and the analyzing task is to disentangle
this information.

Mathematically the content of a specific cell i of
the two-dimensional spectrum, i.e. the number of
showers Ni with shower sizes ðlgN e; lgN tr

l Þi of cell
i, is related to the flux of primary cosmic ray ele-
ments via the integral equation:

Ni ¼ 2pAsTm

XNA

A¼1

Z 18$

0$

Z þ1

&1

dJA

d lgE

' pAððlgN e; lgN tr
l Þij lgEÞ

' sin h cos hd lgEdh ð1Þ

where dJA/d lgE denotes the differential flux of an
element with mass number A and the summation is
carried out for all elements present in the primary
cosmic radiation. The conditional probability pA
describes the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. Measurement time
Tm and sampling area As can be treated as con-
stants. For the data range considered no depen-
dence on azimuth angle is found which results in
the factor of 2p. Any dependence on solid angle
is therefore reduced to the integration over zenith
angle ranging from 0! to 18!.

The probability pA itself is an integral:

pA ¼
Z þ1

&1

Z þ1

&1
sA!ArA d lgN true

e d lgN tr;true
l ð2Þ

where sA ¼ sAðlgN true
e ; lgN tr;true

l j lgEÞ are the intrin-
sic shower fluctuations describing the probability
for a shower with primary mass A and energy
lgE to exhibit shower sizes lgN true

e and lgN tr;true
l

at observation level. !A ¼ !AðlgN true
e ; lgN tr;true

l Þ rep-
resents the detection and reconstruction efficiency
which depends on the true shower sizes. The
probability rA ¼ rAððlgN e; lgN tr

l Þij lgN
true
e ; lgN tr;true

l Þ
eventually describes the properties of the recon-
struction procedure. It accounts for the resolution
of the reconstruction algorithms and systematic ef-
fects like under- and overestimation of the shower
sizes due to the used fit functions or saturation ef-
fects of the detectors (see e.g. Section 4.3.2 for de-
tails). In addition, all these quantities (especially
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Fig. 2. Two-dimensional shower size spectrum used in the
analysis. The range in lgNe and lgN tr

l is chosen to avoid
influences of inefficiencies.

4 T. Antoni et al. / Astroparticle Physics 24 (2005) 1–25

As: sampling area
Tm: measurement time
primary E-spectra

conditional probability to 
measure Ne and Nµ from 
primary of mass A & energy E

Note, pA is an integral itself:

0.2 < s < 2.1. Values larger or smaller corre-
spond to poorly reconstructed showers which
are mostly small but may be reconstructed with
large shower sizes [21].

• Only measurement runs with all clusters active
are considered. Missing clusters during mea-
surement strongly influence the measurement
and reconstruction thresholds.

• To avoid threshold effects only showers with
showers sizes lgNe P 4.8 and lgN tr

l P 3.6 are
included.

The total number of events remaining after these
cuts amounts to 6.9 · 105 and the effective mea-
surement time adds up to 900 days. This rather
small number of remaining showers is due to the
severe cuts applied in order to guarantee a high
data quality. As will be seen in the following, the
remaining statistical base is sufficient and not the
limiting factor for the reliability of the results.

3. Outline of the analysis

Starting point of the analysis is the two-dimen-
sional shower size spectrum and the contents
(number of events) of the histogram cells displayed
in Fig. 2. In the following each cell of the shower
size spectrum is labeled by a single index i for iden-
tification. The number of events in each cell i re-
sults from the superposition of contributions
induced by different primary particles with various

energies. In this sense information about the pri-
mary energy spectra of all particle types is present
in each cell and the analyzing task is to disentangle
this information.

Mathematically the content of a specific cell i of
the two-dimensional spectrum, i.e. the number of
showers Ni with shower sizes ðlgN e; lgN tr

l Þi of cell
i, is related to the flux of primary cosmic ray ele-
ments via the integral equation:
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where dJA/d lgE denotes the differential flux of an
element with mass number A and the summation is
carried out for all elements present in the primary
cosmic radiation. The conditional probability pA
describes the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. Measurement time
Tm and sampling area As can be treated as con-
stants. For the data range considered no depen-
dence on azimuth angle is found which results in
the factor of 2p. Any dependence on solid angle
is therefore reduced to the integration over zenith
angle ranging from 0! to 18!.

The probability pA itself is an integral:

pA ¼
Z þ1

&1
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sA!ArA d lgN true

e d lgN tr;true
l ð2Þ

where sA ¼ sAðlgN true
e ; lgN tr;true

l j lgEÞ are the intrin-
sic shower fluctuations describing the probability
for a shower with primary mass A and energy
lgE to exhibit shower sizes lgN true

e and lgN tr;true
l

at observation level. !A ¼ !AðlgN true
e ; lgN tr;true

l Þ rep-
resents the detection and reconstruction efficiency
which depends on the true shower sizes. The
probability rA ¼ rAððlgN e; lgN tr

l Þij lgN
true
e ; lgN tr;true

l Þ
eventually describes the properties of the recon-
struction procedure. It accounts for the resolution
of the reconstruction algorithms and systematic ef-
fects like under- and overestimation of the shower
sizes due to the used fit functions or saturation ef-
fects of the detectors (see e.g. Section 4.3.2 for de-
tails). In addition, all these quantities (especially
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2D-Histo as coupled Integral Eqns
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0.2 < s < 2.1. Values larger or smaller corre-
spond to poorly reconstructed showers which
are mostly small but may be reconstructed with
large shower sizes [21].

• Only measurement runs with all clusters active
are considered. Missing clusters during mea-
surement strongly influence the measurement
and reconstruction thresholds.

• To avoid threshold effects only showers with
showers sizes lgNe P 4.8 and lgN tr

l P 3.6 are
included.

The total number of events remaining after these
cuts amounts to 6.9 · 105 and the effective mea-
surement time adds up to 900 days. This rather
small number of remaining showers is due to the
severe cuts applied in order to guarantee a high
data quality. As will be seen in the following, the
remaining statistical base is sufficient and not the
limiting factor for the reliability of the results.

3. Outline of the analysis

Starting point of the analysis is the two-dimen-
sional shower size spectrum and the contents
(number of events) of the histogram cells displayed
in Fig. 2. In the following each cell of the shower
size spectrum is labeled by a single index i for iden-
tification. The number of events in each cell i re-
sults from the superposition of contributions
induced by different primary particles with various

energies. In this sense information about the pri-
mary energy spectra of all particle types is present
in each cell and the analyzing task is to disentangle
this information.

Mathematically the content of a specific cell i of
the two-dimensional spectrum, i.e. the number of
showers Ni with shower sizes ðlgN e; lgN tr

l Þi of cell
i, is related to the flux of primary cosmic ray ele-
ments via the integral equation:

Ni ¼ 2pAsTm

XNA

A¼1

Z 18$
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Z þ1

&1

dJA

d lgE

' pAððlgN e; lgN tr
l Þij lgEÞ

' sin h cos hd lgEdh ð1Þ

where dJA/d lgE denotes the differential flux of an
element with mass number A and the summation is
carried out for all elements present in the primary
cosmic radiation. The conditional probability pA
describes the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. Measurement time
Tm and sampling area As can be treated as con-
stants. For the data range considered no depen-
dence on azimuth angle is found which results in
the factor of 2p. Any dependence on solid angle
is therefore reduced to the integration over zenith
angle ranging from 0! to 18!.

The probability pA itself is an integral:

pA ¼
Z þ1

&1

Z þ1

&1
sA!ArA d lgN true

e d lgN tr;true
l ð2Þ

where sA ¼ sAðlgN true
e ; lgN tr;true

l j lgEÞ are the intrin-
sic shower fluctuations describing the probability
for a shower with primary mass A and energy
lgE to exhibit shower sizes lgN true

e and lgN tr;true
l

at observation level. !A ¼ !AðlgN true
e ; lgN tr;true

l Þ rep-
resents the detection and reconstruction efficiency
which depends on the true shower sizes. The
probability rA ¼ rAððlgN e; lgN tr

l Þij lgN
true
e ; lgN tr;true

l Þ
eventually describes the properties of the recon-
struction procedure. It accounts for the resolution
of the reconstruction algorithms and systematic ef-
fects like under- and overestimation of the shower
sizes due to the used fit functions or saturation ef-
fects of the detectors (see e.g. Section 4.3.2 for de-
tails). In addition, all these quantities (especially
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analysis. The range in lgNe and lgN tr

l is chosen to avoid
influences of inefficiencies.
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As: sampling area
Tm: measurement time
primary E-spectra

Note, pA is an integral itself:

0.2 < s < 2.1. Values larger or smaller corre-
spond to poorly reconstructed showers which
are mostly small but may be reconstructed with
large shower sizes [21].

• Only measurement runs with all clusters active
are considered. Missing clusters during mea-
surement strongly influence the measurement
and reconstruction thresholds.

• To avoid threshold effects only showers with
showers sizes lgNe P 4.8 and lgN tr

l P 3.6 are
included.

The total number of events remaining after these
cuts amounts to 6.9 · 105 and the effective mea-
surement time adds up to 900 days. This rather
small number of remaining showers is due to the
severe cuts applied in order to guarantee a high
data quality. As will be seen in the following, the
remaining statistical base is sufficient and not the
limiting factor for the reliability of the results.

3. Outline of the analysis

Starting point of the analysis is the two-dimen-
sional shower size spectrum and the contents
(number of events) of the histogram cells displayed
in Fig. 2. In the following each cell of the shower
size spectrum is labeled by a single index i for iden-
tification. The number of events in each cell i re-
sults from the superposition of contributions
induced by different primary particles with various

energies. In this sense information about the pri-
mary energy spectra of all particle types is present
in each cell and the analyzing task is to disentangle
this information.

Mathematically the content of a specific cell i of
the two-dimensional spectrum, i.e. the number of
showers Ni with shower sizes ðlgN e; lgN tr

l Þi of cell
i, is related to the flux of primary cosmic ray ele-
ments via the integral equation:

Ni ¼ 2pAsTm

XNA

A¼1

Z 18$

0$

Z þ1

&1

dJA

d lgE

' pAððlgN e; lgN tr
l Þij lgEÞ

' sin h cos hd lgEdh ð1Þ

where dJA/d lgE denotes the differential flux of an
element with mass number A and the summation is
carried out for all elements present in the primary
cosmic radiation. The conditional probability pA
describes the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. Measurement time
Tm and sampling area As can be treated as con-
stants. For the data range considered no depen-
dence on azimuth angle is found which results in
the factor of 2p. Any dependence on solid angle
is therefore reduced to the integration over zenith
angle ranging from 0! to 18!.

The probability pA itself is an integral:

pA ¼
Z þ1

&1

Z þ1
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at observation level. !A ¼ !AðlgN true
e ; lgN tr;true

l Þ rep-
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which depends on the true shower sizes. The
probability rA ¼ rAððlgN e; lgN tr
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l Þ
eventually describes the properties of the recon-
struction procedure. It accounts for the resolution
of the reconstruction algorithms and systematic ef-
fects like under- and overestimation of the shower
sizes due to the used fit functions or saturation ef-
fects of the detectors (see e.g. Section 4.3.2 for de-
tails). In addition, all these quantities (especially
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0.2 < s < 2.1. Values larger or smaller corre-
spond to poorly reconstructed showers which
are mostly small but may be reconstructed with
large shower sizes [21].

• Only measurement runs with all clusters active
are considered. Missing clusters during mea-
surement strongly influence the measurement
and reconstruction thresholds.

• To avoid threshold effects only showers with
showers sizes lgNe P 4.8 and lgN tr

l P 3.6 are
included.

The total number of events remaining after these
cuts amounts to 6.9 · 105 and the effective mea-
surement time adds up to 900 days. This rather
small number of remaining showers is due to the
severe cuts applied in order to guarantee a high
data quality. As will be seen in the following, the
remaining statistical base is sufficient and not the
limiting factor for the reliability of the results.

3. Outline of the analysis

Starting point of the analysis is the two-dimen-
sional shower size spectrum and the contents
(number of events) of the histogram cells displayed
in Fig. 2. In the following each cell of the shower
size spectrum is labeled by a single index i for iden-
tification. The number of events in each cell i re-
sults from the superposition of contributions
induced by different primary particles with various

energies. In this sense information about the pri-
mary energy spectra of all particle types is present
in each cell and the analyzing task is to disentangle
this information.

Mathematically the content of a specific cell i of
the two-dimensional spectrum, i.e. the number of
showers Ni with shower sizes ðlgN e; lgN tr

l Þi of cell
i, is related to the flux of primary cosmic ray ele-
ments via the integral equation:
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where dJA/d lgE denotes the differential flux of an
element with mass number A and the summation is
carried out for all elements present in the primary
cosmic radiation. The conditional probability pA
describes the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. Measurement time
Tm and sampling area As can be treated as con-
stants. For the data range considered no depen-
dence on azimuth angle is found which results in
the factor of 2p. Any dependence on solid angle
is therefore reduced to the integration over zenith
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resents the detection and reconstruction efficiency
which depends on the true shower sizes. The
probability rA ¼ rAððlgN e; lgN tr

l Þij lgN
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l Þ
eventually describes the properties of the recon-
struction procedure. It accounts for the resolution
of the reconstruction algorithms and systematic ef-
fects like under- and overestimation of the shower
sizes due to the used fit functions or saturation ef-
fects of the detectors (see e.g. Section 4.3.2 for de-
tails). In addition, all these quantities (especially

nu
m

be
r 

of
 s

ho
w

er
s

1

10

10 2

10 3

10 4

tr
µlg N

4 4.5 5 5.5 6 6.5

lg
N

e

5

5.5

6

6.5

7

7.5

8

Fig. 2. Two-dimensional shower size spectrum used in the
analysis. The range in lgNe and lgN tr

l is chosen to avoid
influences of inefficiencies.

4 T. Antoni et al. / Astroparticle Physics 24 (2005) 1–25

describes intrinsic shower fluctuations

0.2 < s < 2.1. Values larger or smaller corre-
spond to poorly reconstructed showers which
are mostly small but may be reconstructed with
large shower sizes [21].

• Only measurement runs with all clusters active
are considered. Missing clusters during mea-
surement strongly influence the measurement
and reconstruction thresholds.

• To avoid threshold effects only showers with
showers sizes lgNe P 4.8 and lgN tr

l P 3.6 are
included.

The total number of events remaining after these
cuts amounts to 6.9 · 105 and the effective mea-
surement time adds up to 900 days. This rather
small number of remaining showers is due to the
severe cuts applied in order to guarantee a high
data quality. As will be seen in the following, the
remaining statistical base is sufficient and not the
limiting factor for the reliability of the results.

3. Outline of the analysis

Starting point of the analysis is the two-dimen-
sional shower size spectrum and the contents
(number of events) of the histogram cells displayed
in Fig. 2. In the following each cell of the shower
size spectrum is labeled by a single index i for iden-
tification. The number of events in each cell i re-
sults from the superposition of contributions
induced by different primary particles with various

energies. In this sense information about the pri-
mary energy spectra of all particle types is present
in each cell and the analyzing task is to disentangle
this information.

Mathematically the content of a specific cell i of
the two-dimensional spectrum, i.e. the number of
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where dJA/d lgE denotes the differential flux of an
element with mass number A and the summation is
carried out for all elements present in the primary
cosmic radiation. The conditional probability pA
describes the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. Measurement time
Tm and sampling area As can be treated as con-
stants. For the data range considered no depen-
dence on azimuth angle is found which results in
the factor of 2p. Any dependence on solid angle
is therefore reduced to the integration over zenith
angle ranging from 0! to 18!.

The probability pA itself is an integral:
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sic shower fluctuations describing the probability
for a shower with primary mass A and energy
lgE to exhibit shower sizes lgN true
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at observation level. !A ¼ !AðlgN true
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l Þ rep-
resents the detection and reconstruction efficiency
which depends on the true shower sizes. The
probability rA ¼ rAððlgN e; lgN tr

l Þij lgN
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e ; lgN tr;true

l Þ
eventually describes the properties of the recon-
struction procedure. It accounts for the resolution
of the reconstruction algorithms and systematic ef-
fects like under- and overestimation of the shower
sizes due to the used fit functions or saturation ef-
fects of the detectors (see e.g. Section 4.3.2 for de-
tails). In addition, all these quantities (especially
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describes detection & reconstr. efficiency

0.2 < s < 2.1. Values larger or smaller corre-
spond to poorly reconstructed showers which
are mostly small but may be reconstructed with
large shower sizes [21].

• Only measurement runs with all clusters active
are considered. Missing clusters during mea-
surement strongly influence the measurement
and reconstruction thresholds.

• To avoid threshold effects only showers with
showers sizes lgNe P 4.8 and lgN tr

l P 3.6 are
included.

The total number of events remaining after these
cuts amounts to 6.9 · 105 and the effective mea-
surement time adds up to 900 days. This rather
small number of remaining showers is due to the
severe cuts applied in order to guarantee a high
data quality. As will be seen in the following, the
remaining statistical base is sufficient and not the
limiting factor for the reliability of the results.

3. Outline of the analysis

Starting point of the analysis is the two-dimen-
sional shower size spectrum and the contents
(number of events) of the histogram cells displayed
in Fig. 2. In the following each cell of the shower
size spectrum is labeled by a single index i for iden-
tification. The number of events in each cell i re-
sults from the superposition of contributions
induced by different primary particles with various

energies. In this sense information about the pri-
mary energy spectra of all particle types is present
in each cell and the analyzing task is to disentangle
this information.

Mathematically the content of a specific cell i of
the two-dimensional spectrum, i.e. the number of
showers Ni with shower sizes ðlgN e; lgN tr

l Þi of cell
i, is related to the flux of primary cosmic ray ele-
ments via the integral equation:
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where dJA/d lgE denotes the differential flux of an
element with mass number A and the summation is
carried out for all elements present in the primary
cosmic radiation. The conditional probability pA
describes the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. Measurement time
Tm and sampling area As can be treated as con-
stants. For the data range considered no depen-
dence on azimuth angle is found which results in
the factor of 2p. Any dependence on solid angle
is therefore reduced to the integration over zenith
angle ranging from 0! to 18!.

The probability pA itself is an integral:

pA ¼
Z þ1
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sA!ArA d lgN true

e d lgN tr;true
l ð2Þ

where sA ¼ sAðlgN true
e ; lgN tr;true

l j lgEÞ are the intrin-
sic shower fluctuations describing the probability
for a shower with primary mass A and energy
lgE to exhibit shower sizes lgN true

e and lgN tr;true
l

at observation level. !A ¼ !AðlgN true
e ; lgN tr;true

l Þ rep-
resents the detection and reconstruction efficiency
which depends on the true shower sizes. The
probability rA ¼ rAððlgN e; lgN tr

l Þij lgN
true
e ; lgN tr;true

l Þ
eventually describes the properties of the recon-
struction procedure. It accounts for the resolution
of the reconstruction algorithms and systematic ef-
fects like under- and overestimation of the shower
sizes due to the used fit functions or saturation ef-
fects of the detectors (see e.g. Section 4.3.2 for de-
tails). In addition, all these quantities (especially
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describes properties of reconstr. procedure, 
i.e. systematics

I.e.: 2D-Histo can be understood as system of coupled integral eqns

εA and rA do not depend on zenith angle

integration over zenith angle can be incorporated in sA

conditional probability to 
measure Ne and Nµ from 
primary of mass A & energy E
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0.2 < s < 2.1. Values larger or smaller corre-
spond to poorly reconstructed showers which
are mostly small but may be reconstructed with
large shower sizes [21].

• Only measurement runs with all clusters active
are considered. Missing clusters during mea-
surement strongly influence the measurement
and reconstruction thresholds.

• To avoid threshold effects only showers with
showers sizes lgNe P 4.8 and lgN tr

l P 3.6 are
included.

The total number of events remaining after these
cuts amounts to 6.9 · 105 and the effective mea-
surement time adds up to 900 days. This rather
small number of remaining showers is due to the
severe cuts applied in order to guarantee a high
data quality. As will be seen in the following, the
remaining statistical base is sufficient and not the
limiting factor for the reliability of the results.

3. Outline of the analysis

Starting point of the analysis is the two-dimen-
sional shower size spectrum and the contents
(number of events) of the histogram cells displayed
in Fig. 2. In the following each cell of the shower
size spectrum is labeled by a single index i for iden-
tification. The number of events in each cell i re-
sults from the superposition of contributions
induced by different primary particles with various

energies. In this sense information about the pri-
mary energy spectra of all particle types is present
in each cell and the analyzing task is to disentangle
this information.

Mathematically the content of a specific cell i of
the two-dimensional spectrum, i.e. the number of
showers Ni with shower sizes ðlgN e; lgN tr

l Þi of cell
i, is related to the flux of primary cosmic ray ele-
ments via the integral equation:

Ni ¼ 2pAsTm

XNA
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where dJA/d lgE denotes the differential flux of an
element with mass number A and the summation is
carried out for all elements present in the primary
cosmic radiation. The conditional probability pA
describes the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. Measurement time
Tm and sampling area As can be treated as con-
stants. For the data range considered no depen-
dence on azimuth angle is found which results in
the factor of 2p. Any dependence on solid angle
is therefore reduced to the integration over zenith
angle ranging from 0! to 18!.

The probability pA itself is an integral:

pA ¼
Z þ1

&1

Z þ1

&1
sA!ArA d lgN true

e d lgN tr;true
l ð2Þ

where sA ¼ sAðlgN true
e ; lgN tr;true

l j lgEÞ are the intrin-
sic shower fluctuations describing the probability
for a shower with primary mass A and energy
lgE to exhibit shower sizes lgN true

e and lgN tr;true
l

at observation level. !A ¼ !AðlgN true
e ; lgN tr;true

l Þ rep-
resents the detection and reconstruction efficiency
which depends on the true shower sizes. The
probability rA ¼ rAððlgN e; lgN tr

l Þij lgN
true
e ; lgN tr;true

l Þ
eventually describes the properties of the recon-
struction procedure. It accounts for the resolution
of the reconstruction algorithms and systematic ef-
fects like under- and overestimation of the shower
sizes due to the used fit functions or saturation ef-
fects of the detectors (see e.g. Section 4.3.2 for de-
tails). In addition, all these quantities (especially
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Appendix A. The matrix equation and unfolding
methods

A.1. Formulation of the problem as matrix equation

The bin content Ni of each cell of the two-
dimensional shower size spectrum displayed in
Fig. 2 can be written as

Ni ¼ 2pAsTm

XNA

A¼1

Z 18"

0"

Z þ1

$1

dJA

d lgE

% pAððlgN e; lgN tr
l Þij lgEÞ

% 1

2
sin 2hd lgEdh ðA:1Þ

with the differential flux dJA/d lgE of an element of
mass number A and the conditional probability pA
describing the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. For sufficiently large
showers, which are only included in the present
analysis, measurement time Tm and sampling area
As can be treated as constants and no dependence
on azimuth angle is present, resulting in the factor
2p.

The probability pA can be expressed as

pA ¼
Z þ1

$1

Z þ1

$1
sA!ArAd lgN true

e d lgN tr;true
l ðA:2Þ

with the primary dependent intrinsic shower fluc-
tuations sA, the properties of the reconstruction
(resolution and systematic shifts) rA and the com-
bined efficiencies for detection and reconstruction
!A.

Simulation studies have shown that at KAS-
CADE efficiencies !A and reconstruction proper-
ties rA do not depend on zenith angle h for
h < 20!. In addition the angular resolution of
the KASCADE array in the considered shower
size range is better than 0.2!, so effects due to lim-
ited angular resolution can be safely neglected.
Since only showers with 0! 6 h < 18! are consid-
ered, the integration over zenith angle can be
incorporated into sA. In this sense Eq. (A.1) can
be written as

Ni ¼ AsTmDX
XNA

A¼1

Z þ1

$1

dJA

d lgE

% pAððlgN e; lgN tr
l Þij lgEÞd lgE ðA:3Þ

with effective solid angle DX. The mentioned inte-
gration over zenith angle is now included in the
shower fluctuations.

Using the abbreviation

xAj ¼ AsTmDX
Z lgEjþD lgE

lgEj

dJA

d lgE
d lgE ðA:4Þ

the integral can be written as a sum over n energy
intervals of width D lgE with lgEj denoting the
lower bin edges:

Ni ¼
XNA

A¼1

Xn

j¼1

RA
ijx

A
j ðA:5Þ

Here the matrix element RA
ij is defined by

RA
ij ¼

R lgEjþD lgE
lgEj

dJA
d lgE pAððlgN e; lgN tr

l Þij lgEÞd lgE
R lgEjþD lgE
lgEj

dJA
d lgE d lgE

ðA:6Þ

For small bin width D lgE the value of the matrix
elements RA

ij are not sensitive to the correct shape
of the differential energy spectra dJA/d lgE. A
decoupling between the matrix element RA

ij and
the fluxes dJA/d lgE is then achieved. In the pres-
ent analysis a bin width of D lgE = 0.1 is chosen
which turns out to be sufficiently small.

Introducing the m-dimensional data vector ~Y
which contains the m cell contents Ni of the
two-dimensional shower size spectrum, the rela-
tion between data and energy spectra can be writ-
ten as

~Y ¼
XNA

A¼1

RA ~XA with ~XA ¼

xA1
xA2

..

.

0

BB@

1

CCA and

~Y ¼

N 1

N 2

..

.

0

BB@

1

CCA

ðA:7Þ
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Appendix A. The matrix equation and unfolding
methods
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dimensional shower size spectrum displayed in
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with the differential flux dJA/d lgE of an element of
mass number A and the conditional probability pA
describing the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. For sufficiently large
showers, which are only included in the present
analysis, measurement time Tm and sampling area
As can be treated as constants and no dependence
on azimuth angle is present, resulting in the factor
2p.

The probability pA can be expressed as

pA ¼
Z þ1

$1
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$1
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e d lgN tr;true
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with the primary dependent intrinsic shower fluc-
tuations sA, the properties of the reconstruction
(resolution and systematic shifts) rA and the com-
bined efficiencies for detection and reconstruction
!A.

Simulation studies have shown that at KAS-
CADE efficiencies !A and reconstruction proper-
ties rA do not depend on zenith angle h for
h < 20!. In addition the angular resolution of
the KASCADE array in the considered shower
size range is better than 0.2!, so effects due to lim-
ited angular resolution can be safely neglected.
Since only showers with 0! 6 h < 18! are consid-
ered, the integration over zenith angle can be
incorporated into sA. In this sense Eq. (A.1) can
be written as
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with effective solid angle DX. The mentioned inte-
gration over zenith angle is now included in the
shower fluctuations.

Using the abbreviation

xAj ¼ AsTmDX
Z lgEjþD lgE

lgEj

dJA

d lgE
d lgE ðA:4Þ

the integral can be written as a sum over n energy
intervals of width D lgE with lgEj denoting the
lower bin edges:
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Here the matrix element RA
ij is defined by
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For small bin width D lgE the value of the matrix
elements RA

ij are not sensitive to the correct shape
of the differential energy spectra dJA/d lgE. A
decoupling between the matrix element RA

ij and
the fluxes dJA/d lgE is then achieved. In the pres-
ent analysis a bin width of D lgE = 0.1 is chosen
which turns out to be sufficiently small.

Introducing the m-dimensional data vector ~Y
which contains the m cell contents Ni of the
two-dimensional shower size spectrum, the rela-
tion between data and energy spectra can be writ-
ten as

~Y ¼
XNA

A¼1

RA ~XA with ~XA ¼

xA1
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the integral written as sum
over n energy intervals
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Appendix A. The matrix equation and unfolding
methods

A.1. Formulation of the problem as matrix equation

The bin content Ni of each cell of the two-
dimensional shower size spectrum displayed in
Fig. 2 can be written as
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with the differential flux dJA/d lgE of an element of
mass number A and the conditional probability pA
describing the probability to measure a shower of
primary energy lgE and primary mass A with
shower sizes ðlgN e; lgN tr

l Þi. For sufficiently large
showers, which are only included in the present
analysis, measurement time Tm and sampling area
As can be treated as constants and no dependence
on azimuth angle is present, resulting in the factor
2p.

The probability pA can be expressed as

pA ¼
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with the primary dependent intrinsic shower fluc-
tuations sA, the properties of the reconstruction
(resolution and systematic shifts) rA and the com-
bined efficiencies for detection and reconstruction
!A.

Simulation studies have shown that at KAS-
CADE efficiencies !A and reconstruction proper-
ties rA do not depend on zenith angle h for
h < 20!. In addition the angular resolution of
the KASCADE array in the considered shower
size range is better than 0.2!, so effects due to lim-
ited angular resolution can be safely neglected.
Since only showers with 0! 6 h < 18! are consid-
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even more compact writing:

with the elements of the matrix RA defined by Eq.
(A.6). For a more compact notation the summa-
tion over different primaries can be incorporated
into the matrix equation by defining the response
matrix R and the vector of unknowns ~X schemat-
ically through

R ¼ R1 R2 " " "
! "

and ~X ¼

~X
1

~X
2

..

.

0

BB@

1

CCA ðA:8Þ

where the response matrix R is a block matrix con-
sisting of the response matrices RA for the individ-
ual particles. Adopting this notation yields for Eq.
(A.7) the simple expression

~Y ¼ R~X ðA:9Þ

A.2. Unfolding methods used

A.2.1. The Gold algorithm
For the application of the Gold algorithm [27] a

slight modification of Eq. (A.9) is necessary. A
new data vector ~Y mod and a new response matrix
eR are defined via the diagonal matrix C containing
the statistical uncertainties of the data:

eR ¼ RTCCR and ~Y mod ¼ RTCC~Y

yielding eR~X ¼ ~Y mod

ðA:10Þ

In case of existence of a solution of Eq. (A.10)
the Gold algorithm constructs iteratively the diag-
onal matrix D with elements dii = xi/ymod,i which
yields the desired vector ~X simply as ~X ¼ D~Y mod.
The iterative prescription for the components
reads

xkþ1
i ¼

xki ymod;iPn
j¼1

eRijxkj
ðA:11Þ

where xki is the estimated solution in the kth itera-
tion step.

A.2.2. Bayesian unfolding
The unfolding procedure based on the Bayesian

theorem [28] constructs, like the Gold algorithm,

iteratively a matrix P. The elements of P contain
the probabilities for the values xi if the data ~Y is
measured. Here, P is not a diagonal matrix. The
unknown vector ~X is calculated by ~X ¼ P~Y . Since
P is not a square matrix, one can directly start with
Eq. (A.9). The iterative prescription for the com-
ponents xi reads

xkþ1
i ¼ 1Pm

j¼1Rji

Xm

j¼1

RjixkiPn
l¼1Rjlxkl

yj ðA:12Þ

with xki being the estimated solution after k itera-
tion steps.

A.2.3. Entropy based unfolding
The entropy based method [29] is a special case
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with r(yj) being the statistical uncertainty of the
data element yj. Sð~X Þ is the entropy-based func-
tional depending on the solution vector ~X , s the
so-called regularization parameter governing the
influence of the regularization term S. The values
ri are the elements of a reference distribution vec-
tor ~r which can be considered as the best guess
of the solution ~X . Depending on the value of the
regularization parameter s the solution ~X resem-
bles more or less the reference~r. In this way a bal-
ance between statistical significance of the solution
and systematic uncertainty due to ~r is achieved.
For the minimization of Eq. (A.13) the MINUIT
[51] package was used.

Appendix B. Tabulated values of the all particle
spectrum

See Table B.1.
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eR are defined via the diagonal matrix C containing
the statistical uncertainties of the data:

eR ¼ RTCCR and ~Y mod ¼ RTCC~Y

yielding eR~X ¼ ~Y mod
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In case of existence of a solution of Eq. (A.10)
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tor ~r which can be considered as the best guess
of the solution ~X . Depending on the value of the
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bles more or less the reference~r. In this way a bal-
ance between statistical significance of the solution
and systematic uncertainty due to ~r is achieved.
For the minimization of Eq. (A.13) the MINUIT
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R1, R2, .. : response matrices
of different primary mass groups represents 

prim. energy 
spectra

Y Main Task: Determination of
    transfer matrix R
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Determination of Transfer Matrix

‣ We have chosen to simulated large no. of CORSIKA showers with 
fixed primary energies including full detector MC and event 
reconstruction algorithms.

‣ Obtained distributions have been parametrized with ,appropriate‘ 
fit-functions
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Determination of Transfer Matrix

‣ energy dependence of fit-parameters, e.g.:
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Determination of Transfer Matrix

‣ correction of mass dependent systematic reconstruction offsets in Ne

44
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Solving the Matrix Equation
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(A.6). For a more compact notation the summa-
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where the response matrix R is a block matrix con-
sisting of the response matrices RA for the individ-
ual particles. Adopting this notation yields for Eq.
(A.7) the simple expression

~Y ¼ R~X ðA:9Þ

A.2. Unfolding methods used

A.2.1. The Gold algorithm
For the application of the Gold algorithm [27] a

slight modification of Eq. (A.9) is necessary. A
new data vector ~Y mod and a new response matrix
eR are defined via the diagonal matrix C containing
the statistical uncertainties of the data:

eR ¼ RTCCR and ~Y mod ¼ RTCC~Y

yielding eR~X ¼ ~Y mod

ðA:10Þ

In case of existence of a solution of Eq. (A.10)
the Gold algorithm constructs iteratively the diag-
onal matrix D with elements dii = xi/ymod,i which
yields the desired vector ~X simply as ~X ¼ D~Y mod.
The iterative prescription for the components
reads

xkþ1
i ¼

xki ymod;iPn
j¼1

eRijxkj
ðA:11Þ

where xki is the estimated solution in the kth itera-
tion step.

A.2.2. Bayesian unfolding
The unfolding procedure based on the Bayesian

theorem [28] constructs, like the Gold algorithm,

iteratively a matrix P. The elements of P contain
the probabilities for the values xi if the data ~Y is
measured. Here, P is not a diagonal matrix. The
unknown vector ~X is calculated by ~X ¼ P~Y . Since
P is not a square matrix, one can directly start with
Eq. (A.9). The iterative prescription for the com-
ponents xi reads

xkþ1
i ¼ 1Pm

j¼1Rji

Xm

j¼1

RjixkiPn
l¼1Rjlxkl

yj ðA:12Þ

with xki being the estimated solution after k itera-
tion steps.

A.2.3. Entropy based unfolding
The entropy based method [29] is a special case

of regularized unfolding. The basic idea is the min-
imization of an extended v2-functional with the
incorporation of some constraints. The modified
v2mod-functional reads

v2mod ¼
Xm

j¼1

yj &
Pn

i¼1Rjixi
! "2

rðyjÞ
2 þ sSð~X Þ

with Sð~X Þ ¼
Xn
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xi ln
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ðA:13Þ

with r(yj) being the statistical uncertainty of the
data element yj. Sð~X Þ is the entropy-based func-
tional depending on the solution vector ~X , s the
so-called regularization parameter governing the
influence of the regularization term S. The values
ri are the elements of a reference distribution vec-
tor ~r which can be considered as the best guess
of the solution ~X . Depending on the value of the
regularization parameter s the solution ~X resem-
bles more or less the reference~r. In this way a bal-
ance between statistical significance of the solution
and systematic uncertainty due to ~r is achieved.
For the minimization of Eq. (A.13) the MINUIT
[51] package was used.

Appendix B. Tabulated values of the all particle
spectrum

See Table B.1.
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slight modification of Eq. (A.9) is necessary. A
new data vector ~Y mod and a new response matrix
eR are defined via the diagonal matrix C containing
the statistical uncertainties of the data:

eR ¼ RTCCR and ~Y mod ¼ RTCC~Y

yielding eR~X ¼ ~Y mod

ðA:10Þ

In case of existence of a solution of Eq. (A.10)
the Gold algorithm constructs iteratively the diag-
onal matrix D with elements dii = xi/ymod,i which
yields the desired vector ~X simply as ~X ¼ D~Y mod.
The iterative prescription for the components
reads
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i ¼

xki ymod;iPn
j¼1

eRijxkj
ðA:11Þ

where xki is the estimated solution in the kth itera-
tion step.

A.2.2. Bayesian unfolding
The unfolding procedure based on the Bayesian

theorem [28] constructs, like the Gold algorithm,

iteratively a matrix P. The elements of P contain
the probabilities for the values xi if the data ~Y is
measured. Here, P is not a diagonal matrix. The
unknown vector ~X is calculated by ~X ¼ P~Y . Since
P is not a square matrix, one can directly start with
Eq. (A.9). The iterative prescription for the com-
ponents xi reads
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i ¼ 1Pm
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l¼1Rjlxkl

yj ðA:12Þ

with xki being the estimated solution after k itera-
tion steps.

A.2.3. Entropy based unfolding
The entropy based method [29] is a special case

of regularized unfolding. The basic idea is the min-
imization of an extended v2-functional with the
incorporation of some constraints. The modified
v2mod-functional reads
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with r(yj) being the statistical uncertainty of the
data element yj. Sð~X Þ is the entropy-based func-
tional depending on the solution vector ~X , s the
so-called regularization parameter governing the
influence of the regularization term S. The values
ri are the elements of a reference distribution vec-
tor ~r which can be considered as the best guess
of the solution ~X . Depending on the value of the
regularization parameter s the solution ~X resem-
bles more or less the reference~r. In this way a bal-
ance between statistical significance of the solution
and systematic uncertainty due to ~r is achieved.
For the minimization of Eq. (A.13) the MINUIT
[51] package was used.
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the estimated solution xi in the kth iteration reads:

Bayesian based unfolding very similar

stopping criterion: minimize weighted 
mean square error (WMSE)
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Stopping Criterion
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Test of Method
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Comparing different Unfoldings
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Estimation of syst. Uncertainties

49

modify fit function or parameters of fit function to Ne and Nµ and redo 
unfolding: 
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How Many Mass Groups to Reconstruct ?
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Comments/Summary
‣ two observables needed to reconstruct E & M by 

unfolding techniques

‣ good resolution & small fluctuations help a lot

‣ KASCADE: systematic uncertainties dominated by 
EAS simulations, not by data !

‣ 3 or more observables: unfolding technically 
possible, but highly complex
- may be better to combine observables again 
and reduce to two

‣ event-by-event mass estimator only allows 
analysis of <A> as a fct of E, which is rather 
insensitive to tests of astrophysical models...

‣ ... but useful, e.g. for CR astronomy
51
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? E/Z or E/A ?
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? E/Z or E/A ?

QGSJET               EHe/4            SYBILL

QGSJet 01 Sibyll 2.1


