Analysis of the CP structure of the Higgs-tau Yukawa coupling

Merijn van de Klundert*, Elisabetta Gallo, Alexei Raspereza, Andrea Cardini, Oleg Filatov, Mareike Meyer

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Introduction and state-of-the-art

Scalar and pseudoscalar bosons

- Couplings of (speudo) scalar boson to fermions or gauge bosons can be:
 - CP-even (scalar), J^{CP}=0⁺⁺
 - CP-odd (speudoscalar), J^{CP}=0⁺⁻
 - Mixture of even and odd couplings
- Standard model: all Higgs couplings (to fermions and bosons) are **CP-even**
 - Any deviation **unambiguous** sign new physics!
- Pure CP-odd couplings to gauge bosons excluded. Non-exhaustive refs:
 - arXiv:1903.06973, arXiv:1712.02304
- Note: CP-odd couplings only occur at tree level for fermion couplings!
 - Higgs-top Yukawa coupling: pure CP-odd coupling excluded with ~3 sigma (CMS and ATLAS) arXiv:2003.10866 arXiv:2004.04545
 - Higgs-tau: first analysis of CP structure of Yukawa coupling by CMS!
 - HIG-20-006, <u>https://cds.cern.ch/record/2725571</u>
 - More references to literature on above measurements

Theory background

φ_{cp}: angle between tau decay plane

• Parameterise CP even and odd couplings via mixing angle $\phi_{\tau\tau}$:

$$\mathcal{L}_{Y} = -\frac{m_{\tau}H}{v} (\kappa_{\tau}\bar{\tau}\tau + \tilde{\kappa}_{\tau}\bar{\tau}i\gamma_{5}\tau) \quad \tan(\phi_{\tau\tau}) = \frac{\tilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

 The CP information is transferred to correlations between transversal components tau spin
 CMS Simulation Prelimina

$$d\Gamma_{h\to\tau^+\tau^-} \sim 1 - s_z^- s_z^+ + \left|\mathbf{s}_T^-\right| \left|\mathbf{s}_T^+\right| \cos\left(\varphi_s - 2\phi_\tau\right)$$

 This correlation can be probed via the angle φ_{cp} between the **tau decay planes**

$$d\Gamma_{h\to\tau^+\tau^-} \approx 1 - b(E_+) b(E_-) \frac{\pi^2}{16} \cos(\varphi_{CP}^* - 2\phi_{\tau})$$

- Gen level distribution ϕ_{cp} for scalar, pseudoscalar and Z boson
- $\Rightarrow \phi_{cp}$ discriminating variable for this analysis!

Analysis strategy

In a nuthsell

- Utilise full Run 2 data set (137 fb⁻¹)
- For PAS HIG-20-006 analyse most important decay modes (~50%)
 - Muon plus hadronic
 - Fully hadronic

Mode	μ^{\pm}	π^{\pm}	$ ho^{\pm} ightarrow \pi^{\pm} \pi^{0}$	${a_1}^\pm \to \pi^\pm \pi^0 \pi^0$	${\bf a_1}^\pm \to \pi^\pm \pi^\mp \pi^\pm$
$\mathcal{B}(\%)$	17.4	11.5	25.9	9.5	9.8
Symbol	μ	π	ρ	a_1^{1pr}	a ₁ ^{3pr}

- Background extraction
- Signal-background distinction using machine learning methods
- Extract mixing angle $\phi_{\tau\tau}$ via combined template fit to signal and background distributions
- **First** review parts analysis not specific to CP-analysis

=> Analysis indebted to work STXS analysis **HIG-19-010** (full Run 2) and **HIG-18-032** ('16/'17 with embedding and Machine learning techniques)

• Next focus on dedicated methods developed to optimise signal strength

Modelling background processes

90% of backgrounds obtained in data-driven way

- Background processes:
 - Drell-Yan (leading semileptonic BG), QCD (leading hadronic BG), W+jets, ttbar, single top, diboson
- May also categorise backgrounds in genuine tau, jet-fakes, lepton-fakes, and prompt leptons
 - Backgrounds with 2 genuine taus obtained from tau embedding technique
 - Bg with QCD jet faking hadronic tau via fake-factor method
 - Remaining backgrounds via simulation
- \Rightarrow Overall, 90% of backgrounds obtained in data-driven manner!

	genuine τ_h	$jet \rightarrow \tau_h$	lepton $\rightarrow \tau_h$
genuine τ	τ -Embedding		
jet→τ	Fake Factor	Fake Factor	
lepton $\rightarrow \tau$	Simulation	Fake Factor	Simulation
prompt lepton	Simulation	Fake Factor	Simulation

Modelling background processes

Tau embedding, arXiv:1903.01216

- Tau embedding relies on principle lepton universality EWK processes
- Exploit principle to model genuine di-tau background:
 - Select di-muon events in real data
 - Remove hits associated to muons
 - Simulate decaying Z-boson to ditau with identical kinematics as di-muon pair (pt, invariant mass, eta-phi). In empty detector
 - Add the hits of tau decay products to the data event
- Obtain rate genuine tau background events, with fully datadriven underlying event!

Modelling background processes

Fake factor method, https://arxiv.org/abs/1801.03535

- Fake factor: data-driven approach to obtain contribution in signal region of **quark or gluon jet faking a tau lepton**
 - Define jet-enriched determination region, orthogonal to signal region
 - Determine rate of jets faking a hadronic tau lepton using tight and loose tau isolation criteria
 - ⇒ Apply the fake factors to loose tau candidates in application region to obtain jet-fake rate!
 - Hadronic channel: QCD background only. Semileptonic: weighted average for QCD, ttbar and W+jets
- Obtain rate of jet faking tau, with fully data-driven underlying event

Event categorisation

Separating signal from background events

- Mu+tau channel: use neural net
- Hadronic channel: use Boosted
 Decision tree
- Input variables as in PAS-18-032
- Categorise events in 3 mutually exclusive cats:
 - Signal (ggH, VBF, VH)
 - Genuine tau pair
 - Jet fake (inc. prompt leptons and leptons faking hadronic tau)

Observable	$\tau_{\mu}\tau_{h}$	$\tau_{\rm h} \tau_{\rm h}$
p_T of leading τ_h or τ_μ	1	~
$p_{\rm T}$ of (trailing) $\tau_{\rm h}$ for $\tau_{\mu} \tau_{\rm h} (\tau_{\rm h} \tau_{\rm h})$ channel	1	×
$p_{\rm T}$ of visible di- τ	1	1
$p_T \text{ of } di - \tau_h + p_T^{miss}$	×	<
$p_{\rm T}$ of $\mu + \tau_{\rm h} + p_{\rm T}^{\rm miss}$	1	×
Visible di- τ mass	1	1
$\tau_{\mu}\tau_{h}$ or $\tau_{h}\tau_{h}$ mass (using SVFIT)	1	1
Leading jet p _T	1	<
Trailing jet p _T	1	×
Jet multiplicity	1	<
Dijet invariant mass	1	✓
Dijet p _T	1	×
Dijet ∆η	1	/ ×
$p_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\sim \checkmark

Event categorisation

Left: jet fakes

Right: genuine tau pair category

Extracting and optimising sensitivity

- Brief recap:
 - A measurement of φ_{CP} is sensitive to φ_{ττ}.
 - We follow background treatment and event categorisation largely conform the STXS measurement
- ⇒ Next: review how **experimentally** assess ϕ_{CP}
- ⇒ Methods dedicatedly developped for analysis to optimise analysis sensitivity

Experimentally extracting \phi_{\tau\tau}

Extracting tau decay planes

Mode	μ^{\pm}	π^{\pm}	$ ho^{\pm} ightarrow \pi^{\pm} \pi^{0}$	${a_1}^\pm \to \pi^\pm \pi^0 \pi^0$	${\bf a_1}^\pm \to \pi^\pm \pi^\mp \pi^\pm$
$\mathcal{B}(\%)$	17.4	11.5	25.9	9.5	9.8
Symbol	μ	π	ρ	a_1^{1pr}	a ₁ ^{3pr}

- Decay to muon or single charged pion
 - Use Impact parameter method

• IP method: arXiv:1108.0670

- Decay to rho, a_1^{1p} , a_1^{3p}
 - Use neutral pion method

• DP Method: arXiv:0307.331

Optimisation analysis sensitivity

Focus on additional corrections applied to optimise signal strength

- Decay mode identification important, migrations will lead to incorrect φ_{cp} estimates
- Per default, decay mode given by HPS (hadron-plus-strip) algorithm
- Dedicated MVA developpd for enhanced decay mode distinction (on top of deeptau discriminant,

CMS-DP-2019-033)

- Inputs: kinematics tau decay products and HPS decay mode
- Substantial gain in purity and efficiency
- Improves signal sensitivity by O(15%)

Table 17: Comparing purity of the HPS and MVA DM.

	π	$\pi\pi^0$	$\pi 2\pi^0$	3π	$3\pi\pi^0$
HPS DM	56%	56%	0%	67%	55%
MVA DM	70%	68%	55%	82%	71%
Gain	14%	12%	55%	15%	16%

Table 18: Comparing efficiency of the HPS and MVA DM.

		1			
	π	$\pi\pi^0$	$\pi 2\pi^0$	3π	$3\pi\pi^0$
HPS DM	91%	73%	0%	89%	53%
MVA DM	83%	79%	39%	87%	65%
Gain	-8%	6%	39%	-2%	12%
			\		

Improvements related to IP method

Improvements in Primary Vertex (PV) estimates

- Two improvements in determination PV location:
 - Remove tracks associated to tau decay products. If boosted Higgs, non-zero impact parameters may pull PV
 - Add beam spot information in fit of PV
- Resolution in transversal plane increases by factor 3 (!)

Production mode	Vertex type	$\sigma_x^{\rm PV}$	σ_y^{PV}	σ_z^{PV}
U \ z z	Nominal	17	17	26
$\mathbf{H} \rightarrow \tau_{\mu} \tau_{h}$	Refitted Beamspot-Corrected	5	5	29
7	Nominal	20	20	30
$\Sigma \rightarrow \mu^{\prime}h$	Refitted Beamspot-Corrected	5	5	34

Helical extrapolation

3-d vs 2-d extrapolation tracks

- Per default, track extrapolation to find PCA (point closest approach) performed in trasnversal plane
- Using helical, 3-dimensional approach has 2 profound advantages:
 - IP estimate better for tracks with high eta values
 - Can propagate uncertainties in track and PV in consistent manner
 - ⇒ Define an impact-parameters significance as |IP|/sigma(IP)
 - ⇒ throughout analysis require |IP|/sigma IP> 1.5
- Lead to improvement sensitivity O(15%)

More details in PAS, https://cds.cern.ch/record/2725571

Unrolled phi-CP distributions

rho+rho channel. Resolution ~ 1.1 sigma

- Observe s/b improvement owing to BDT
- Backgrounds with genuine taus expected to be flat in ϕ_{cp}
 - \Rightarrow Enhance sensitivity by merging bins. Jet fakes: symmetrise around $\phi_{cp}\text{=}\pi$

Unrolled phi-CP distributions

mu+pi channel. Resolution: ~1.0 sigma

- Using IP method twice results in correlated PV smearing effects
 - \Rightarrow Only symmetrise bins in ϕ_{cp} = π

DESY. | CP in H->tau tau decay | Merijn van de Klundert

Results

Combined Negative log-likelihood fit

- Obtain observed (expected) sensitivity of **3.2 (2.3) sigma**
- Mixing angle (68% CL level)

$\phi_{\gamma\gamma} = (4 \pm 17 \text{ (stat)} \pm 2 \text{ (bin-by-bin)} \pm 1 \text{ (syst)} \pm 1 \text{ (theory)})^\circ$.

137 fb⁻¹ (13 TeV)

45

90

 \Rightarrow Fully consistent with SM CMS Preliminary Observed: $\hat{\phi}_{r\tau}^{obs} = 4 \pm 17^{\circ}(68\% \text{ CL})$ \Rightarrow Excludes part nMSSM phase space 10 Expected: $\hat{\phi}_{rer}^{exp.} = 0 \pm 23^{\circ} (68\% \text{ CL})$ 99.7% $(\phi_{\tau\tau} <= 27^{\circ})$ Measurement statistically dominated $-2\Delta \log \mathcal{L}$ 68% -45<u>~90</u> $\phi_{\tau\tau}(\text{degrees})$

Outlook analysis

- Outlook for Run-2 paper:
 - Add e+t channel (~10% expected enhancement)
 - Replace neutral pion with polarimetric method for 3p*3p channel
- Run 3/phase-2: apply regressive machine learning algorithms for ϕ_{CP} determination

Event selection

Kinematic cuts in a birds eye view:

- Muon-hadronic channel
 - Utilise single-muon trigger and a paired muon-tau trigger
 - Offline muon: minimal pt of 20 (21) GeV in 2016 (2017, 2018)
 - Offline tau: pt > 25 (32) GeV in 2016 (2017, 2018)
 - Muon: eta< 2.1. Tau: eta< 2.3
 - Cut on transverse mass to suppress W+Jet background:

$$m_{\Upsilon} \equiv \sqrt{2p_{\Upsilon}^{\mu}p_{\Upsilon}^{\text{miss}}[1 - \cos(\Delta \phi)]} < 50 \,\text{GeV},$$

• Veto b-jets

Common selections:

- Loose cut on impact parameters muon and tau
- Multiple pairs: select pair with most isolated objects
 - Further selections and cuts in PAS...

Hadronic channel

- Use hadronic di-tau trigger
- Offline, select tau pairs with pt> 40 GeV
- Eta<2.1

2-dimensional scan of reduced couplings

Figure 9: Two-dimensional scan of the (reduced) CP-even (κ) and CP-odd ($\tilde{\kappa}$) τ Yukawa couplings.

"propaganda plot"

Provides explanation observed significance higher than expected

Mu+rho channel, Drell-Yan evts, phi_CP spectrum

More supplementary results at: http://cms-results.web.cern.ch/cms-results/public-results/preliminaryresults/HIG-20-006/index.html#AddFig We construct a 4-component vector in the laboratory frame as $\lambda^{\pm} = (0, \mathbf{j}^{\pm})$. These four vectors λ^{\pm} are boosted in the ZMF and denoted $\lambda^{*\pm}$. We also boost the respective charged pion four vectors to the ZMF, denoted $q^{*\pm}$. Then we take the transverse components of $\lambda^{*\pm}$ w.r.t. $q^{*\pm}$. We normalise the vectors to obtain unit vectors $\hat{\lambda}_{\perp}^{*+}$ and $\hat{\lambda}_{\perp}^{*-}$. From these vectors we reconstruct the angles ϕ^* and O^* as:

$$\begin{split} \phi^* &= \arccos(\hat{\lambda}_{\perp}^{*+} \cdot \hat{\lambda}_{\perp}^{*-}) \\ O^* &= \hat{q}^{*-} \cdot (\hat{\lambda}_{\perp}^{*+} \times \hat{\lambda}_{\perp}^{*-}), \end{split}$$
(4)

From ϕ^* and O^* we reconstruct ϕ_{CP} on a range [0, 360°] as:

$$\phi_{\rm CP} = \begin{cases} \phi^* & \text{if } O^* \ge 0\\ 360^\circ - \phi^* & \text{if } O^* < 0 \end{cases}$$
(5)