Strahldynamik

T. Limberg

(Elektronen)-Linacs und -Ringe

Ringe machen sich ihre Strahlgrösse selbst (Synchrotron-Strahlung)

Linacs und Ringe II

In Linacs wird Höhe x Breite im wesentlichen durch die Elektronen-Kanone vorgegeben (wenn man nichts verkehrt macht => Strahldynamik) Hohe Spitzenströme möglich (Bunch Compression)

SASE FEL

Extrem kleine Emittanzen (Höhe x Breite), extrem hoher Spitzenstrom (kA Bereich).

e- Kanone

Requirements:

- 60 MV/m on the cathode
 - ~ 6.5 MW input power
- 700 μs pulse length
- 10 Hz repetition rate
 - ~ 45 kW average rf power

PITZ Results:

- 60 MV/m at the cathode
- ~ 6.5 MW input power
- ~700 µs pulse length
- 10 Hz repetition rate
- average rf power: 45 kW

Emittanz-Kompensation

PITZ Resultate

Neuer Laser mit mehr Flankensteilheit...

Gemessene Emittanzen bei verschiedenen Ladungen

Velocity-Bunching

Bunch Compression

Komprimierung ohne 3.9 GHz System

Komprimierung mit dem 3.9 GHz System

Was kann passieren bei hohen Strömen?

- 'Selbstzerstörung' durch starke elektromagnetische Felder:
 - Raumladungsfelder
 - Wake-Felder
 - CSR-Felder

können Strahlgrösse und/oder Energiebreite des Strahls so vergrössern, dass kein SASE-Prozess mehr möglich ist.

 \Rightarrow start-to-end Simulationsrechnungen

(mehrere Computer-Programme werden verwendet, teilweise Rechenzeiten von Tagen auf ca. 50 CPUs)

European XFEL, segmentation

S2E bei FLASH (Überkomprimierung)

Messung (links) und Simulation (rechts) des longitudinalen Strahlprofils bei FLASH

S2E für kleine Ladungen

SASE Simulationsrechnungen

Micro-Bunching Instabilität als COTR beobachtet als Diagnostikproblem

Gain<u>=10</u> → 10% Current 1% Impedance Energy R_{56}

Strong (~10⁵ X incoherent) COTR observed)

Laser Heater

Einfluss der Dispersion auf SASE

