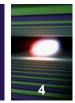


European XFEL Experiments

Serguei L. Molodtsov European XFEL

XFEL What is Photon Beam System (PBS)?

- Photon Beam Systems comprise: undulators, beamlines, experimental stations (instruments), diagnostics, additional instrumentation
- Operation of the Photon Beam System is under direct responsibility of the European XFEL GmbH

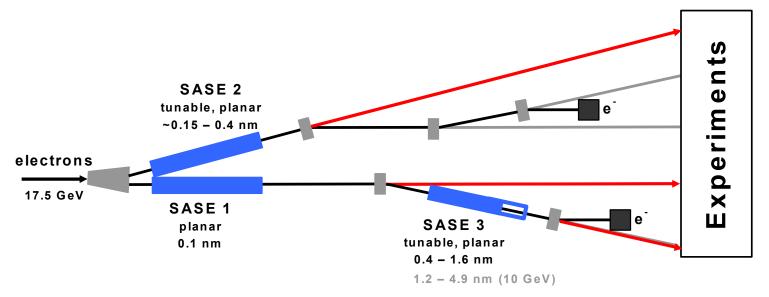


Structure of PBS: Working Packages (WPs)

- WP 71 Undulator Systems
- WP 72 Simulation of Photon Fields
- WP 73 X-ray Optics & Transport
- WP 74 X-ray Photon Diagnostics
- WP 75 Detector Development
- WP 76 DAQ & Control Systems
- WP 78 Optical Lasers
- WP 79 Sample Environment
- WP 81-86 Scientific Instruments

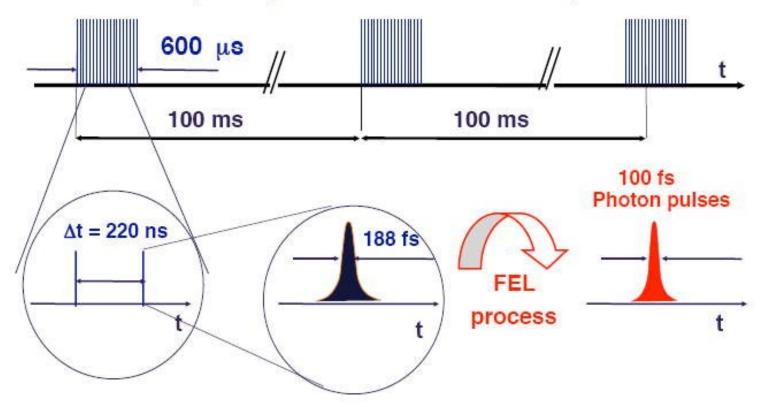
- J. Pflüger
- G. Geloni
- H.Sinn
- J. Grünert
- H. Graafsma
- C. Youngman
- N.N.
- N.N.
- C. Bressler
- M. Meyer, N.N.

The European XFEL


Undulators (WP71, J. Pflüger)

Start-up design

- Concentrate on SASE FEL radiation
- Provide as large as possible photon energy range
- For soft x-rays start with linear polarization (under reconsideration)
- Enable use of high harmonics and spontaneous emission in SASE beamlines

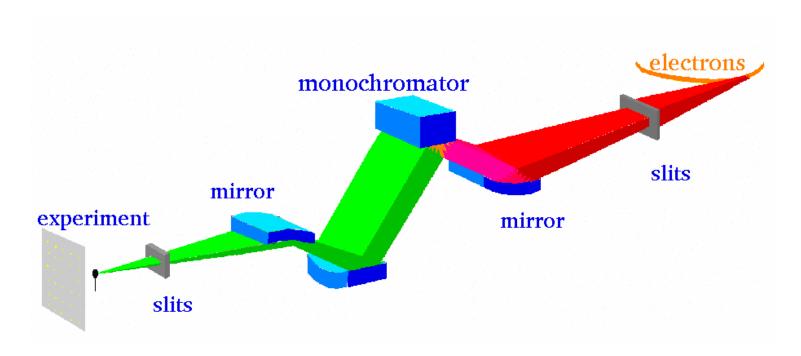


XFEL Undulators: FEL Parameters

Parameter	Unit	SASE 1	SAS	E 2		SASE 3	14
Electron energy	GeV	17.5	17.5	17.5	17.5	17.5	10.0**
Wavelength	nm	0.1	0.1	0.4	0.4	1.6	6.4
Photon energy	keV	12.4	12.4	3.1	3.1	0.8	0.2
Peak power	GW	20	20	80	80	130	135
Average power*	W	65	65	260	260	420	580
Photon beam size (FWHM)	μm	70	85	55	60	70	95
Photon beam divergence (FWHM)	µrad	1	0.84	3.4	3.4	11.4	27
Coherence time	fs	0.2	0.22	0.38	0.34	0.88	1.9
Spectral bandwidth	%	0.08	0.08	0.18	0.2	0.3	0.73
Pulse duration	fs	100	100	100	100	100	100
Photons per pulse	#	10 ¹²	10 ¹²	1.6 × 10 ¹³	1.6 × 10 ¹³	1.0× 10 ¹⁴	4.3 × 10 ¹⁴
Average flux	#/s	3.3 × 10 ¹⁶	3.3 × 10 ¹⁶	5.2 × 10 ¹⁷	5.2 × 10 ¹⁷	3.4 × 10 ¹⁸	1.4 × 10 ¹⁹
Peak brilliance	В	5.0 × 10 ³³	5.0 × 10 ³³	2.2 × 10 ³³	2.0 × 10 ³³	5.0 × 10 ³²	0.6 × 10 ³²
Average brilliance*	В	1.6 × 10 ²⁵	1.6 × 10 ²⁵	7.1 × 10 ²⁴	6.4 × 10 ²⁴	1.6 × 10 ²⁴	2.0 × 10 ²³

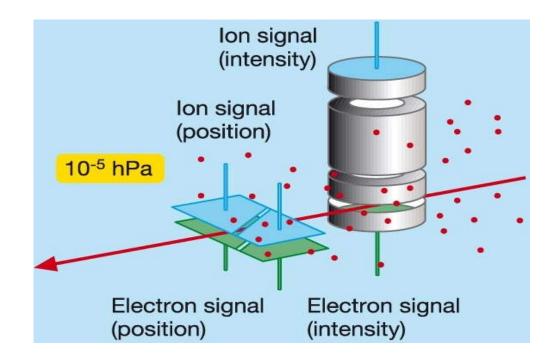
XFEL Undulators: FEL Pulses Structure

Electron bunch trains (with up to 2700 bunches à 1 nC)



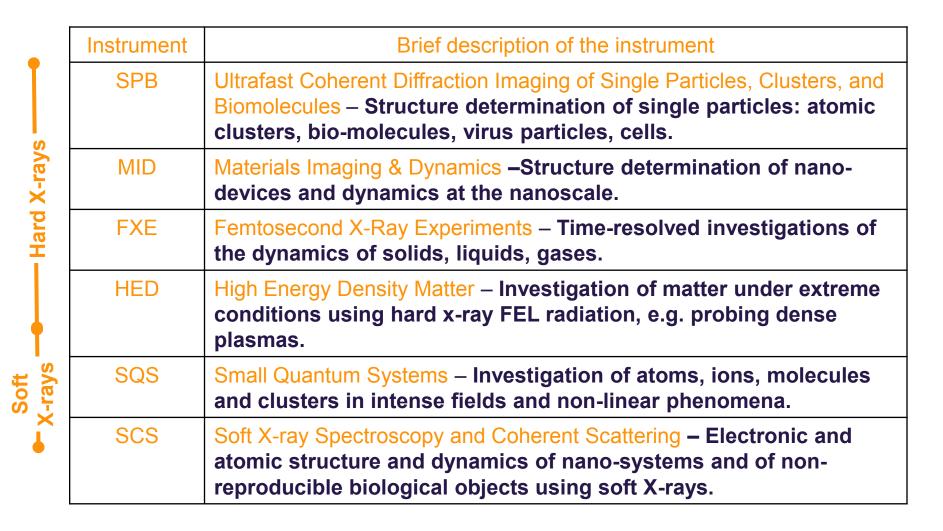
Superconducting LINAC technology provides 27.000 light pulses/s in burstlike structure. It makes XFEL.EU attractive for photon-hungry experiments.

The European XFEL Beamlines (WP73, H. Sinn)



The European XFEL

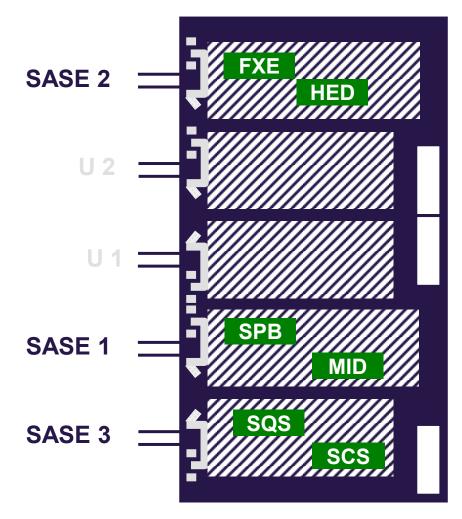
Diagnostics (WP74, J. Grünert)



The European XFEL

Scientific Instruments (WP81-86)

XFEL Selection of First Instruments



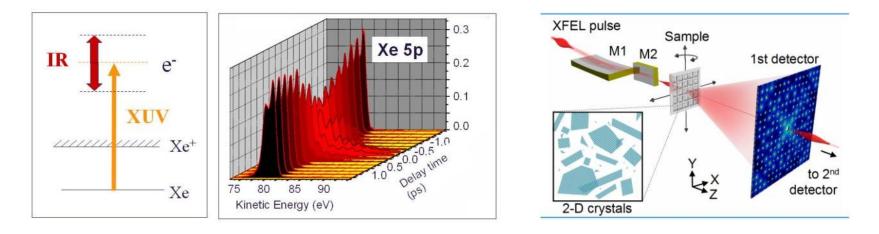
Destribution of First Instruments

Source	Photon beam line characeristics
SASE 1	FEL radiation ~12 keV High coherence Spontaneous radiation (3 rd , 5 th harmonics)
SASE 2	FEL radiation 3-12 keV High time-resolution Spontaneous radiation (3 rd , 5 th harmonics)
SASE 3	FEL radiation 0.2 – 3.1 keV; High flux
	FEL radiation 0.2 – 3.1 keV; High resolution

XFEL Instrument Workshops

- Instrument Workshops:
 - → SQS Nov '08, Aarhus, Dänemark
 - → SPB Nov '08, Uppsala, Sweden
 - → HED Mar '09, Oxford, UK
 - SCS Jun '09, Villigen, Switzerland
 - → MID Oct '09, Grenoble, France
 - → FDE Dec '09, Budapest, Hungary

- The Workshops brought together potential users of the instruments with purposes:
 - to review the areas of application of the instrument
 - to identify beam parameters and requirements to the experimental station(s) from the side of different experiments



European

EL Startup version instruments (Soft x-rays)

Small Quantum Systems (SQS)

 Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena

Spectroscopy & Coherent Scattering (SCS)

 Electronic and atomic structure and dynamics of nano-systems and of non-reproducible biological objects

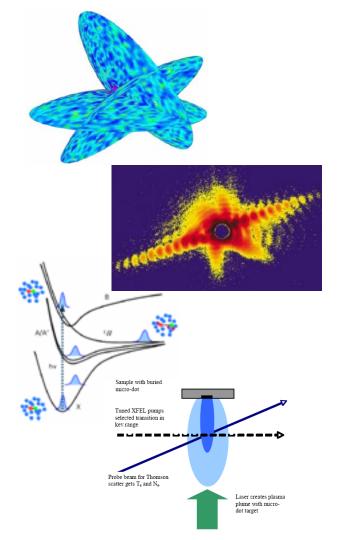
Startup version instruments (Hard x-rays)

15

 Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules (SPB)

> Structure determination of single particles: atomic clusters, bio-molecules, virus particles, cells

Materials Imaging & Dynamics (MID)

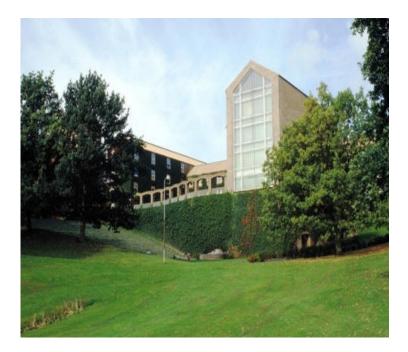

 Structure determination of nano- devices and dynamics at the nanoscale

Femtosecond Diffraction Experiments (FDE)

 Time-resolved investigations of the dynamics of solids, liquids, gases

High Energy Density Matter (HED)

 Investigation of matter under extreme conditions using hard x-ray FEL radiation, e.g. probing dense plasmas


European XFEL Small Quantum Systems (SQS)

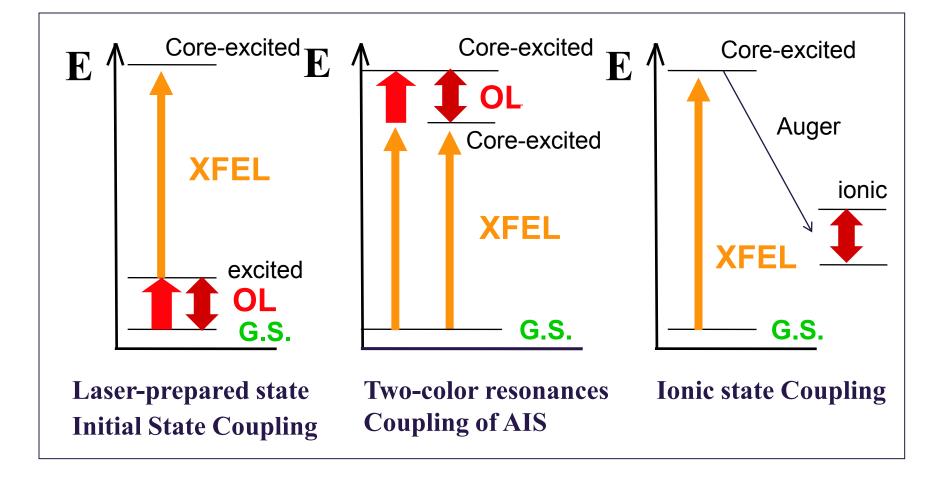
University of Aarhus, 29-31 Oct 2008

- Organized by H. Pedersen, L. Lammich
- Program committee: G. Faigel, M. Larsson, J. Marangos, M. Meyer, Th. Möller, Th. Tschentscher, J. Ullrich, A. Wolf
- Participants: ~60 scientists from 11 countries

Two working groups (WG):

- Gas phase experiments (Th. Möller & M. Meyer)
- Experiments with ion beams and trapped particles (H. Pedersen & S. Schippers)

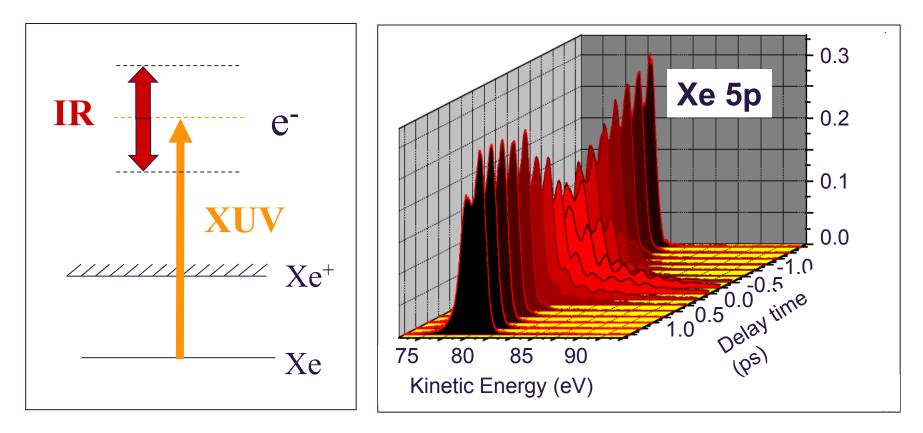
XFEL SQS Instrument


Major applications & instrumentation

- Ultrafast atom & molecular spectroscopy
- Strong field effects in SQS
- Highly excited ions
- Endstation for high field studies with opt. laser and particles energy analyser
- 2D detection & advanced diagnostics
- Additional location for user provided equipment (ion storage ring, etc.)

Requirements to x-ray delivery

	Photon energy [keV]	Tuna- bility	Polarization	Beam size [µm]	BW	Rep.rate	OL-PP/ X-PP
Initial	0.8 – 3.1	Yes	Linear	1, 100.	0.1%	5 MHz	Yes/Yes
Requested	~0.28 – 3	Yes	Variable	1, 100 unfocus.	0.1%	5 MHz	Yes/Yes
Status / Comments	t.b.e.	\checkmark	t.b.e.	\checkmark	\checkmark	\checkmark	\checkmark



XFEL SQS Details (M. Meyer)

FLASH: 13.7 nm, 20 μJ, 50 μm focus, 20 fs Opt. Laser: 800 nm, 1mJ, 50 μm focus, 120 fs

HHG : Toma et al. PRA 62, 0618015 (2000)

FLASH: 2007

European

FEL Single Particle and Biomolecules (SPB)

University Uppsala, 20-22 Nov 2008

- Organized by D. van der Spoel, J. Hajdu
- Program committee: H. Chapman, G. Faigel, F. Pfeiffer, I. Schlichting, P. Szoke, Th. Tschentscher
- Participants: ~70 scientists from 10 countries

Three working groups:

- Instrumentation
 - (H. Chapman)
- Simulation & rad. damage (G. Faigel)
- Data analysis & needs
 (D. van der Spoel)

XFEL SPB Instrument

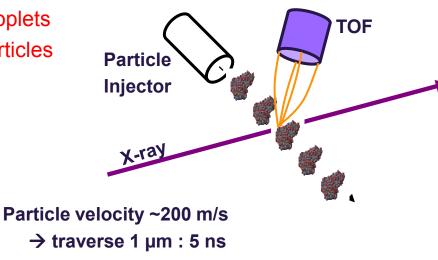
Major applications & instrumentation

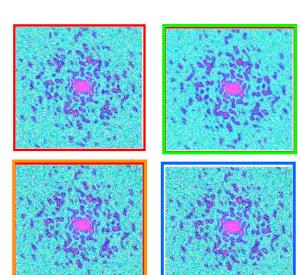
- Coherent diffraction imaging (CDI) from injected particles and bio-objects
- CDI from supported bio-objects (e.g. cells)
- Time-resolved diffraction from gas phase molecules New
- Laser techniques for aligning molecules New
- 2D detection & advanced diagnostics
- Various particle injection techniques

Requirements to x-ray delivery

	Photon energy [keV]	Tuna- bility	Polarization	Beam size [µm]	BW	Rep.rate	OL-PP/ X-PP
Initial	12.4	-	Linear	a.s.a.p.	0.1 %	5 Mhz	No*/No
Requested	~6 (?) – 12	-2	-	0.1, 2, 5, unfocus.	-	~MHz	Yes (2x)/ No
Status / Comments	t.b.e.	\checkmark	\checkmark	\checkmark	\checkmark	t.b.e.	t.b.e.

S.L. Molodtsov, Grömitz, 22-25.03.2010


European SPB Details


- Use of high repetition rates
 - Take benefit to collect needed amount of data
 - → Orientations
 - → Signal/orientation

10⁵ – 10⁷ patterns req. for 3D reconstruction

Sample delivery

- Various methods with different benefits
 - → Jets
 - Droplets -
 - Particles

- Issues
 - Detector
 - \blacksquare Jet \rightarrow stability
 - Particles → charge cloud
 - lon diagnostics \rightarrow flight time

XFEL High Energy Density (HED) Experiments

University Oxford, 30 Mar – 1 Apr 2009

- Organized by J. Wark
- Program committee: P. Audebert, M. Fajardo, F. Faigel, G. Gregori, R. Lee, D. Riley, Th. Tschentscher
- Participants: ~60 scientists from 9 countries

Two working groups:

- X-ray instrumentation
 - (D. Riley, Th. Tschentscher)
- Opt. laser instrumentation
 - (P. Audebert, J. Wark)

Spokespeople nominated

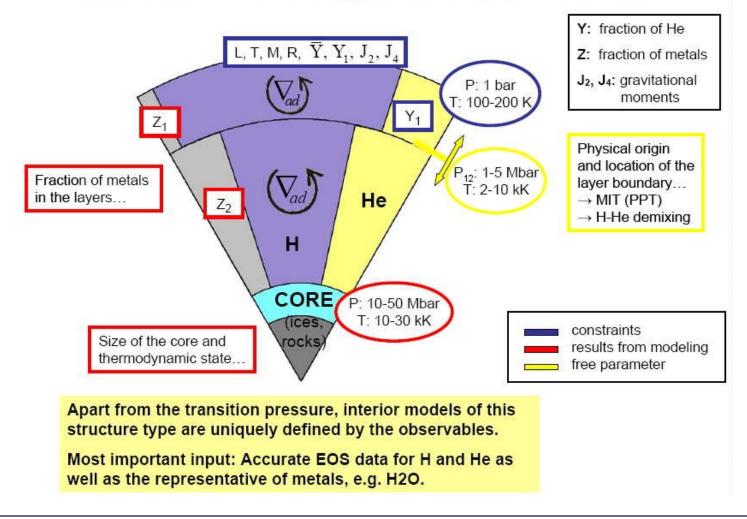
- P. Audebert, G. Gregori,
- F. Rosmej, M. Tolley,
- K. Sokolowski-Tinten, J. Wark

XFEL HED Instrument

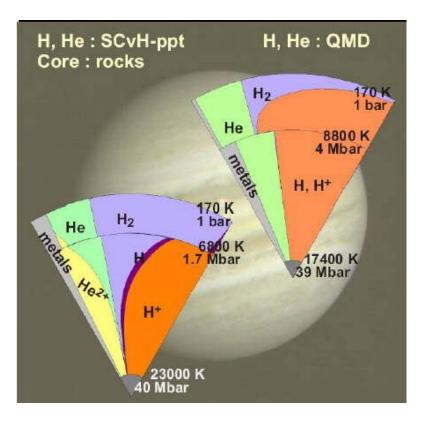
Major applications & instrumentation

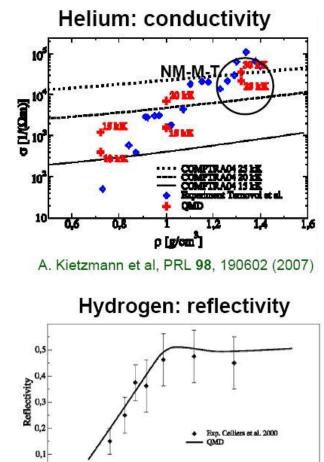
- Variety of hard x-ray techniques (scattering, diffraction, emission) to probe HED systems
- Isochoric & volumetric heating of matter
- Laser techniques for diagnosing are needed
- High energy laser for shock creation; extreme states of matter
- 2D detection for imaging; fs-XSC for emission

Requirements to x-ray delivery


	Photon energy [keV]	Tuna- bility	Polariza- tion	Beam size [µm]	BW	Rep.rate	OL-PP/ X-PP
Initial	8 - 12		Linear	1 - 100	0.1 %	10 Hz	Yes/Yes
Requested	4 - 20	±3%	Linear	1,3,10,100 unfocus.	10 ⁻⁶ - 10 ⁻³	10 Hz (+)	Yes/Yes
Status / Comments	t.b.e.	\checkmark	\checkmark	√(?)	t.b.e., 1-3%BW	t.b.e.	t.b.e.

S.L. Molodtsov, Grömitz, 22-25.03.2010


Standard three-layer structure model


XFEL HED Details (R. Redmer)

26

Interior of Jupiter with LM-REOS

Distribution of chemical species for 2 models using different EOS

0000,20,40,60,8 Pressure [Mbar]

B. Holst et al., PRB 77, 184201 (2008)

FEL Spectroscopy & Coherent Scattering (SCS)

PSI-SLS, Villigen, 2-4 Jun 2009

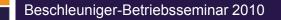
European

- Organized by R. Abela, B. Patterson
- Program committee: R. Abela, H. Chapman, G. Faigel, G. Grübel,
 Z. Hussain, M. Kiskinova, M. Kovalchuk, J. Luning, N. Mårtensson,
 S. Molodtsov, W. Wurth
- Participants: ~90 scientists, 14 countries

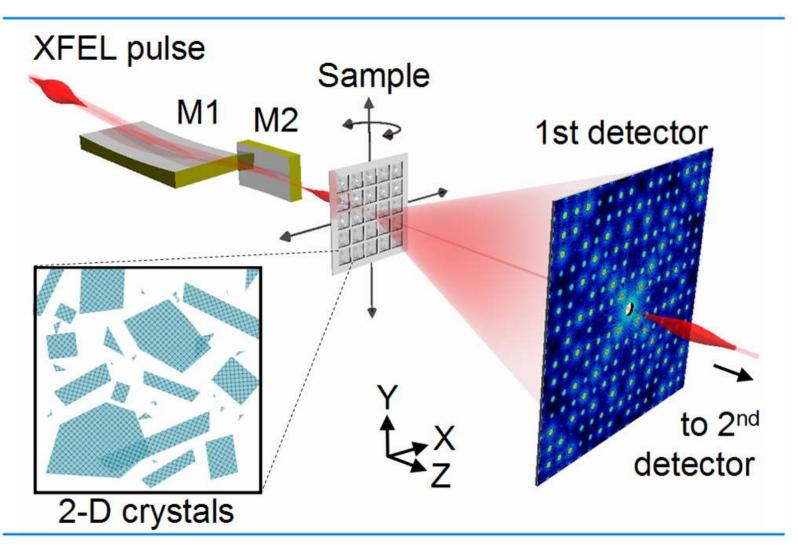
Three working groups (WG):

- Photon-in/photon-out & electron-out spectroscopic experiments (W. Wurth & Z. Hussain)
- Imaging, dynamics & photon correlation spectroscopy: Biological objects (I. Schlichting & I. Vartaniants)
- Imaging, dynamics & photon correlation spectroscopy: Magnetic Systems (G. Grübel & J. Luning)

XFEL SCS Instrument



Major applications & instrumentation


- Electronic structure and excitations in solids & liquids
- Magnetism & magnetic structures including their dynamics
- Structure determination of nanosystems and bilogical units
- Endstation for x-ray spectroscopic studies
- 2D detection & advanced diagnostics
- Additional location for user provided equipment (e.g. CDI/XPCS chamber)

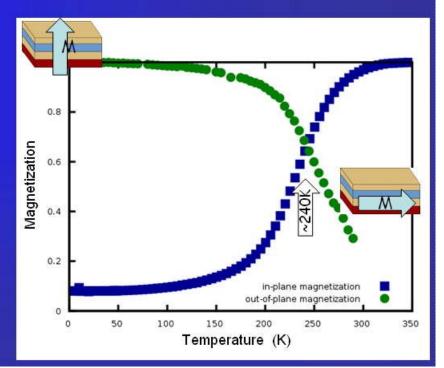
Requirements to x-ray delivery

	Photon energy [keV]	Tuna- bility	Polarization	Beam size [µm]	BW	Rep.rate	OL-PP/ X-PP
Initial	0.8 – 3.1	Yes	Linear	1,10,100	0.01%	5 MHz	Yes/Yes
Requested	~0.28 – 2	Yes	Variable	1,10,100 unfocus.	0.003%	30 kHz	Yes/Yes
Status / Comments	t.b.e.	\checkmark	t.b.e.	\checkmark	t.b.e.	\checkmark	\checkmark

29

XFEL SCS Details (S. Kevan)

Spin Reorientation Transition in Au:Co:Au



$$E = \{K_2(T) - 2\pi M_s(T)^2\} \sin^2(\theta) + K_4(T) \sin^4(\theta)$$

Magnetization rotates from out-of- to in-plane as a function of increasing temperature (Park et al. APL 86 042504).

Driving force in SRT is mostly temperature dependent interfacial magnetic anisotropy.

Ultrathin Co layers -> spin-reorientation transition. Preferred magnetization direction is determined by competition between shape and crystalline/surface anisotropy (Pescia et al. PRL 65, 2599).

XFEL Materials Imaging and Dynamics (MID)

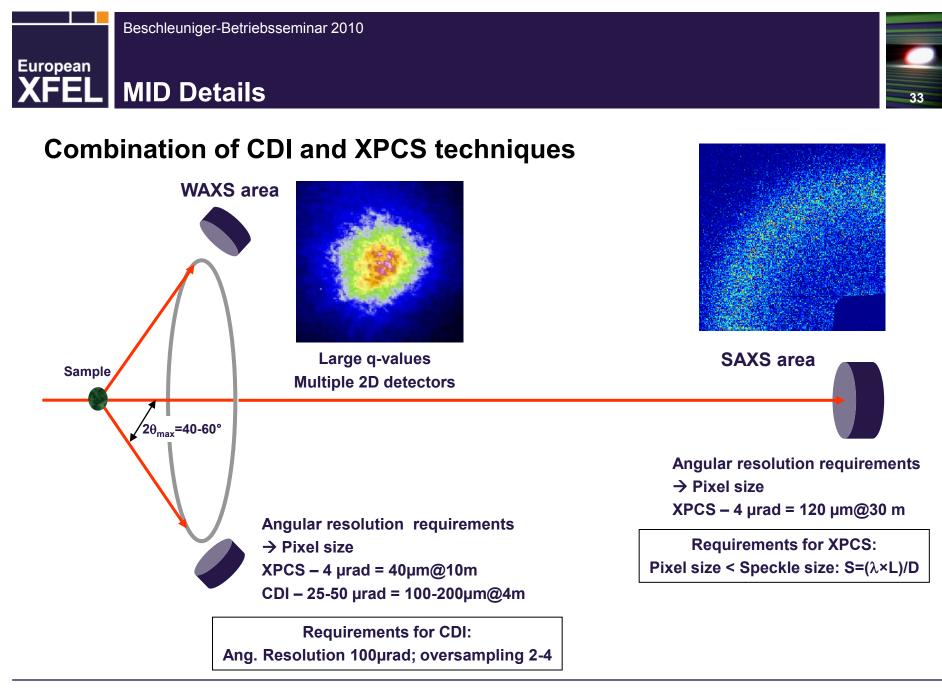
ESRF, Grenoble, 28/29 Oct 2009

- Organized by A. Madsen
- Program committee: J. Goedkoop, G. Grübel, O. Thomas, I. Vartaniants, Th. Tschentscher
- Participants: ~75 scientists from 10 countries

Two working groups:

- Coherent diffraction imaging (O. Thomas, I. Vartaniants)
- Photon correlation spectrosc.
 (C. Schüßler-Langeheine,
 G. Grübel)

XFEL MID Instrument



Major applications & instrumentation

- Coherent diffraction imaging (CDI) from nano-structured objects & materials
- XPCS from amorphous and soft-matter systems (SAXS & large-q)
- 2D detects should match requirements; several detectors
- Large-q request puts constraint on detectors and exp. hall

Requirements to x-ray delivery

	Photon energy [keV]	Tuna- bility	Polarization	Beam size [µm]	BW	Rep.rate	OL-PP/ X-PP
Initial	8-12, 36, 60-90		Linear	0.1 - 100	0.01	5 Mhz	Yes/Yes
Requested	~6 – 12(5), ~25	1.	Vertical linear	1, 10, 25, unfocus.	nat., 10 ^{.4} , 10 ^{.5}	4.5 MHz	Yes/Yes
Status / Comments	t.b.e.	\checkmark	t.b.e.	\checkmark	\checkmark	\checkmark	t.b.e.

XFEL Femtosecond X-ray Experiments (FXE)

Hotel Benczur, Budapest, 9 – 11 Dec 2009

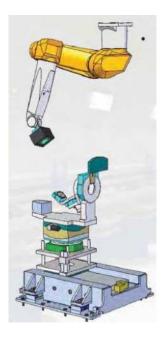
- Organized by G. Vanko
- Program committee: M. Bargheer, Ch. Bressler, F. Faigel, P. Glatzel, S. Johnson, J. Nielsen, A. Soldatov, S. Techert, Th. Tschentscher
- Participants: ~90 scientists from 16 countries

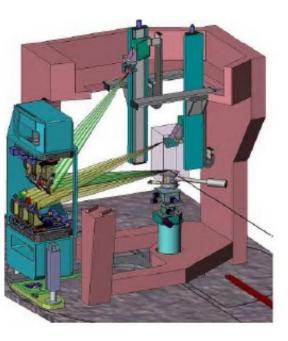
Two working groups:

- X-ray diffraction (M. Bargheer S. Johnson)
- X-ray spectroscopy (P. Glatzel, A. Soldatov)

XFEL FXE Instrument

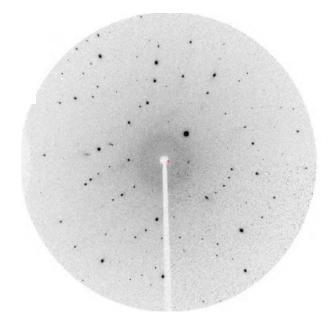
Major applications & instrumentation


- Time-depend structural properties
- X-ray diffraction and spectroscopy techniques
- Solids and liquid samples (request for gas phase TR-XRD use SPB) New
- 2D detection for liquid and crystalline diffraction New
- Integrate optical spectroscopy techniques New
- Reduced interest in X-ray pumping New


Requirements to x-ray delivery

	Photon energy [keV]	Tuna- bility	Polarization	Beam size [µm]	BW [%]	Rep.rate	OL-PP/ X-PP
Initial	3-12, 18-36	-	.=	10 - 100	nat.,104	5 MHz	Yes/Yes
Requested	~4 - 18	±3%	Linear	10, 100, line, unf.	nat.,104	4.5 MHz	Yes/ No
Status / Comments	t.b.e.	\checkmark	\checkmark	\checkmark	t.b.e. , 1-3% BW	\checkmark	\checkmark

EuropeanXFELFXE Details



Single pulse

Laue pattern

Complex instrument

- Diffraction
- Spectroscopy
- In-situ optical method

Large bandwidth request

- Chirp
- Single shot near-edge spectroscopy
- Laue-type diffraction

- **2007** Priority for undulators and instruments is determined
- 2008+ Formation of user groups for first instruments » Requirements for beam transport
 - » Scientific scope and layout instruments
 - » Infrastructure needs for instruments
- 2009+ Establish and review conceptual designs » X-ray optics & beam transport » Scientific Instruments
- **2010+** Establish and review technical designs
- **2011+** Construction and commissioning
- **2014** Involve Users in early experimental program

Thank you for your attention

and

you are very welcome to plan

experiments at the European XFEL

S.L. Molodtsov, Grömitz, 22-25.03.2010