LUXE GEANT4 Simulation Output

Oleksandr Borysov

LUXE Meeting September 23, 2020

GEANT4 simulation output

GEANT4 simulation output:

- File(s) with trees (Ttree):
 - each thread writes it own tree to the file marked with a suffix *_tN.root, where N = 0, 1... is a thread number;
- File with histograms:
 - Same name without suffix. Histograms from different threads are merged in the end of run and saved to a separate root file.

There are 4 trees:

Reconstruction:

Energy deposited in sensitive elements of the detectors (hit):

Hit identified by sensitive element (cell_x, cell_y, layer, detector_id)

Cluster collection of hits of the same detector_id and layer presumably related to the same particle

Reconstruction in experiment

Reconstruction approach:

- Energy deposited in sensitive elements of the detectors (hit):
 - Hit identified by sensitive element (cell_x, cell_y, layer, detector_id) and deposited energy (e_dep);
- Cluster collection of hits of the same detector_id and layer presumably related to the same particle (but necessarily);
- Combining clusters and to assign them particle tracks or shower in calorimeter:
 - Clusters needs to be translated to global reference frame.

Output of hits and tracks

Detector Settings Tree

Settings for the sensitive detectors

CreateNtuple("DetSettings", "Sensitive detector settings"); CreateNtupleIColumn(4, "detid"); CreateNtupleSColumn(4, "det name"); CreateNtupleIColumn(4, "layerid"); CreateNtupleIColumn(4, "n cell x"); CreateNtupleIColumn(4, "n cell y"); CreateNtupleDColumn(4, "size x"); CreateNtupleDColumn(4, "size y"); CreateNtupleDColumn(4, "size z"); CreateNtupleDColumn(4, "translation x"); CreateNtupleDColumn(4, "translation_y"); CreateNtupleDColumn(4, "translation z"); CreateNtupleDColumn(4, "e phi"); CreateNtupleDColumn(4, "e theta"); CreateNtupleDColumn(4, "e psi"); CreateNtupleDColumn(4, "mass"); CreateNtupleSColumn(4, "material"); CreateNtupleDColumn(4, "density");

root	[4] 1	DetSe	ettings-	>Sca	an("detid:	det_	name:laye	rid:n_cell_	x:n_c	cell_y:size	_x:size_y	:mass:materia	l:de	nsity:tra	nslation_x	:tran	slation_y	/:translati	on_z")		
**** /nts/	*****	****	******** user/obc	****) r v s	*********	**** h1c	*********** \$/lxsim hi	**************************************	***** 0/run	**************************************	**************************************	************** 105dev 3031m	**** CV	********** /emsta lum	************	*****	*********	**********	*******	****	*****
*	Row		deti	d *	det_name		layerid	<pre>* n_cell_x</pre>	* n	n_cell_y *	sizex	* size_y	*	mass *	material	* (density *	⁺ translati	* transl	ati *	translati *
****	****	****	******	****	******	****	******	********	****	*******	*******	******	****	******	*******	****	*******	********	*******	*****	*****
*) *	300	0 *	LysoCal		0	* 300		25 *	300	* 50	*	2.25 *	LANEX		7500 *	* 160		0 *	10890 *
*		L *	300	1 *	LysoCal		0	* 300		25 *	300	* 50	*	2.25 *	LANEX		7500 *	* -160		0 *	10890 *
*		2 *	400	0 *	LeadGlass		0	*]		1 *	38	* 38	* 2	.508228 *	LG_TF1		3860 *	* 8.512e-15	* -139.	916 *	13279.992 *
*		3 *	400	1 *	LeadGlass		0	*]		1 *	38	* 38	* 2	.508228 *	LG_TF1		3860 *	^k 98.299156	* -98.29	915 *	13279.992 *
*		1 *	400	2 *	LeadGlass		0	* 1		1 *	38	* 38	* 2	.508228 *	LG_TF1		3860 *	⊧ 139.016		0 *	13279.992 *
*	!	5 *	400	3 *	LeadGlass		0	* 1		1 *	38	* 38	* 2	.508228 *	LG_TF1		3860 *	98.299156	* 98.299	156 *	13279.992 *
*		5*	400	4 *	LeadGlass		0	*]		1 *	38	* 38	* 2	.508228 *	LG_TF1		3860 *	* 8.512e-15	* 139.	916 *	13279.992 *
*		7*	400	5 *	LeadGlass		0	*]		1 *	38	* 38	* 2	.508228 *	LG_TF1		3860 *	* -98.29915	* 98.299	156 *	13279.992 *
*	:	3*	400	6*	LeadGlass		0	*]		1 *	38	* 38	* 2	.508228 *	LG_TF1		3860 *	⊧ -139.016	* 1.702e	-14 *	13279.992 *
*	1) *	400	7 *	LeadGlass		0	*]		1 *	38	* 38	* 2	.508228 *	LG_TF1		3860 *	* -98.29915	* -98.29	915 *	13279.992 *
*	1) *	200	0 *	ECalSenso		0	* 110		11 *	550	* 55	* 0.	0225544 *	G4_Si		2330 *	* 304.13		0 *	4258.54 *
*	1	L *	200	0 *	ECalSenso		1	* 110		11 *	550	* 55	* 0.	0225544 *	G4_Si		2330 *	* 304.13		0 *	4263.042 *
*	1	2 *	200	0 *	ECalSenso		2	* 110		11 *	550	* 55	* 0.	0225544 *	G4_Si		2330 *	* 304.13		0 *	4267.544 *

Output of hits and tracks

SQL query would be:

SELECT * FROM Hits INNER JOIN HitTracks ON (Hits.eventid == HitTracks.eventid) AND (Hits.track_list == HitTracks.trackid)

Output configuration

Shielding:4000

CreateNtuple("Tracks", "Tracks hitting volumes marked for track interception");

CreateNtupleDColumn(1, "E"); CreateNtupleDColumn(1, "x"); CreateNtupleDColumn(1, "y"); CreateNtupleDColumn(1, "z"); CreateNtupleDColumn(1, "t"); CreateNtupleDColumn(1, "vtxx"); CreateNtupleDColumn(1, "vtxy"); CreateNtupleDColumn(1, "vtxz"); CreateNtupleDColumn(1, "px"); CreateNtupleDColumn(1, "py"); CreateNtupleDColumn(1, "pz"); CreateNtupleDColumn(1, "theta"); CreateNtupleDColumn(1, "phi"); CreateNtupleIColumn(1, "pdg"); CreateNtupleIColumn(1, "physproc"); umn(1, "xlocal"); umn(1, "ylocal"); umn(1, "zlocal"); OpppDetContainer:1000 umn(1, "eventid"); ComptonDetContainer:2000 umn(1, "trackid"); GammaCalo:3000 umn(1, "weight");

/luxe/run/dump_geometry false

/luxe/run/add_intercept_volume
/luxe/run/add_intercept_volume
/luxe/run/add_intercept_volume
/luxe/run/add_intercept_volume

/run/initialize

/luxe/run/add_sensitive_volume
/luxe/run/add_sensitive_volume
/luxe/run/add_sensitive_volume

Spectra

Aug 2020 Data Runs, bunch/pulse crossings completed

Experiment Config	$w_0 = 3\mu m$	$w_0 = 3.5 \mu \text{m}$	$w=0,4.0\mu {\rm m}$	$w_0 = 4.5 \mu \text{m}$	$w_0 = 5.0 \mu \text{m}$	$w_0 = 8.0 \mu \text{m}$	$w_0=20.0\mu{\rm m}$	$w_0=50.0\mu{\rm m}$	$w_0=100.0\mu {\rm m}$
peak SQED ξ	5.12	4.44	3.88	3.45	3.1	1.94	0.78	0.31	0.15
peak SQED χ (16.5 GeV)	0.9	0.79	0.69	0.61	0.55	0.34	0.138	0.055	0.028
JETI40 e-laser 16.5 GeV	939	951	946	949	938	1000	193	200	200
JETI40 e-laser 17.5 GeV	639	1000	1000	1000	1000	500			
JETI40 g-laser 16.5 GeV	1000	1000	999	1000	1000	1000			
JETI40 g-laser 17.5 GeV									
JETI40 misalignments									
JETI40 mCP production									

/afs/desy.de/group/flc/luxe/IPstrong_V1.1.00/JETI40/e_laser/16.5GeV/w0_3031nm /afs/desy.de/group/flc/luxe/IPstrong_V1.1.00/JETI40/e_laser/16.5GeV/w0_8000nm

HICS spectra for different laser beam spot size

Backup

GEANT4 Simulation code

Repository:

https://stash.desy.de/projects/LXSIM/repos/lxsim/browse

git clone https://user_name@stash.desy.de/scm/lxsim/lxsim.git

Environment on naf:

./cvmfs/sft.cern.ch/lcg/releases/LCG_97/Geant4/10.06.p01/x86_64-centos7-gcc8-opt/Geant4-env.sh ./cvmfs/sft.cern.ch/lcg/releases/LCG_97/Geant4/10.06.p01/x86_64-centos7-gcc8-opt/bin/geant4.sh # use cmake /cvmfs/sft.cern.ch/lcg/releases/LCG_97/CMake/3.14.3/x86_64-centos7-gcc8-opt/bin/cmake

Primary beam settings

<pre># Primary beam settings ####################################</pre>	#######################################	
<pre>#/lxphoton/gun/setDefault #/lxphoton/gun/beamType</pre>	mono	Fixed momentum beam
<pre>#/lxphoton/gun/beamType #/lxphoton/gun/setSigmaX #/lxphoton/gun/setSigmaY #/lxphoton/gun/setFocus</pre>	gaussian 5 um X 5 um gi 8.1 m	FEL beam with fixed emittance and iven $\sigma_{_{x,y}}$ and focusing distance.
/lxphoton/gun/beamType /lxphoton/gun/MCParticlesF	mc ile test_data_0.0	out MC, typically Anthony's out file
<pre>#/lxphoton/gun/SpectraFile #/lxphoton/gun/SpectraFile /gun/particle e-</pre>	<pre>spectra_test1.tx spectra_test_cor</pre>	xt Arbitrary spectra which will be interpolated and used for generating particles
/gun/energy 17.5 GeV	Ignored for	MC

Primaries with a given spectra

Gaussian beam

<u>×</u>10⁹

X at IP

Y at IP

Z at IP

1e+07

-1.282e-06

0.005008

1e+07

7.818e-07

0.005009

1e+07

0.024

-0.05

6.56e-06

Entries

Std Dev

Entries

Mean

Std Dev

Entries

Std Dev

-0.1

Mean

Mean

500

400

300

200

100

e- phase space

6.25e+07

-6.212e-08

-7.775e-10

8.177e-06

0.005

<u>×10</u>-6

Entries

Mean

Mean

Std Dev x

Std Dev v

0.15

dN_{e+}/dx,y,z

🛨 X at IP

→ Y at IP

→ Z at IP

0.1

0.15

x,y,z (mm)

0.05

0

×10³

35

30

25

20

15

Physics list settings

/lxphoton/stepMax	1 um
<pre>#/lxphoton/stepMax</pre>	10 um
#	
/run/setCut	1 um
#	

- if (name == "local") {
 AlterPhysicsList(name, new PhysListEmStandard(name));
- } else if (name == "emstandard_opt0") {
 AlterPhysicsList(name, new G4EmStandardPhysics());
- } else if (name == "emstandard_opt1") {
 AlterPhysicsList(name, new G4EmStandardPhysics_option1());
- } else if (name == "emstandard_opt2") {
 AlterPhysicsList(name, new G4EmStandardPhysics_option2());
- } else if (name == "emstandard_opt3") {
 AlterPhysicsList(name, new G4EmStandardPhysics_option3());
- } else if (name == "emstandard_opt4") {
 AlterPhysicsList(name, new G4EmStandardPhysics_option4());
- } else if (name == "emstandardSS") {
 AlterPhysicsList(name, new G4EmStandardPhysicsSS());
- } else if (name == "standardSSM") {
 AlterPhysicsList(name, new PhysListEmStandardSSM());
- } else if (name == "emstandardWVI") {
 AlterPhysicsList(name, new G4EmStandardPhysicsWVI());
- } else if (name == "standardGS") {
 AlterPhysicsList(name, new PhysListEmStandardGS());
- } else if (name == "empenelope"){
 AlterPhysicsList(name, new G4EmPenelopePhysics());
- } else if (name == "emlowenergy"){
 AlterPhysicsList(name, new G4EmLowEPPhysics());
- } else if (name == "emlivermore"){
 AlterPhysicsList(name, new G4EmLivermorePhysics());
- } else {

}

```
G4cout << "PhysicsList::AddPhysicsList: <" << name << ">"
        << " is not defined"
        << G4endl;</pre>
```

15

Visualization attributes

Nothing is in the code,

All settings for visualization are in mac files (essentially in one file vis_lx_color.mac)

vis_ev_e_v1.mac

Draw geometry in surface mode with colors settings
/control/execute vis_lx_color.mac

vis_lx_color.mac

```
/control/alias bpipeColor "0.5 0.5 0.5 1.0"
/control/alias vacuumColor "0.0 0.4 0.4 1.0"
#/control/alias vacuumVisibility false
/control/alias vacuumVisibility true
/control/alias containerVisibility true
/control/alias containerColor "0.3 0.3 0.3 0.0"
/control/alias fieldVolumeVisibility true
/control/alias fieldVolumeColor "0.3 0.3 0.3 0.3"
```

/vis/viewer/set/style surface

/vis/viewer/set/lightsThetaPhi 130 30 deg

.

Simulation example

/luxe/run/add_intercept_volume
/luxe/run/add_intercept_volume
/luxe/run/add_intercept_volume
/luxe/run/add_intercept_volume
/luxe/run/add_intercept_volume

OpppDetContainer:1000 ComptonDetContainer:2000 GammaCalo:3000 Shielding:4000 Floor:5000

/run/initialize

/luxe/run/add_sensitive_volume
/luxe/run/add_sensitive_volume
/luxe/run/add_sensitive_volume
/luxe/run/add_sensitive_volume
/luxe/run/add_sensitive_volume

OpppTracker:1000:1:0 ComptonTracker:2000:1:0 GammaCalo:3000:1:0 Shielding:4000:1:0 Floor:5000:1:0

17

Add detector

#include "LxDetector.hh"

```
class LxDetectorGammaCalo: public LxDetector
{
 public:
    LxDetectorGammaCalo(DetectorConstruction *detc = 0): LxDetector(detc) {};
    virtual ~LxDetectorGammaCalo() {};
    virtual void Construct();
 protected:
    void AddSegmentation();
};
                 void DetectorConstruction::ConstructLuxeDetectors()
                   fDetList["OpppDet"] = new LxDetectorOPPP(this);
                   fDetList["ComptonDet"] = new LxDetectorCompton(this);
                   fDetList["GammaDet"] = new LxDetectorGammaCalo(this);
                   for (auto &nd : fDetList) { nd.second->Construct(); }
                 }
```