Overview of DMCS Projects and MicroTCA.4 Developments

Dariusz Makowski

MicroTCA.4 for Industry and Research

Agenda

- Introduction
- Image Acquisition and Processing with MicroTCA.4
- Smart MMC and RMC solution for xTCA systems including FMC support
- High-power piezo driver HPD-400
- Conclusions

Dariusz Makowski MTCA Workshop, December 1, 2020

Fusion Projects - Plasma Diagnostics

CONTROL AND DATA

COUISITION LABORATORY

for Industry and Research

MTCA Workshop, December 1, 2020

Image Acquisition and Processing – External CPU

Design on various levels:

- New hardware design (frame grabber, FMC modules, PCIe link, etc.)
- Universal firmware and software framework for IAS

MicroTCA.4 for Industry and Research

MTCA Workshop, December 1, 2020

Image Acquisition and Processing with MTCA.4

Micro Telecommunication Computing Architecture:

- High RAMI (Reliability, Availability, Maintainability and Inspectability)
- Extensions for precision timing and synchronization
- Intelligent Platform Management
- Good price to performance ratio

Various Cameras and Interface Standards

- Camera Link
- Camera Link-HS
- CoaXPress 2.0
- GigaVision
- 10 GigE Vision
- IEEE1394/Fire Wire

SCD Hercules (CL)

HD-SDI

2.04 Gb/s, 5.44 Gb/s, 6.8 Gb/s 2.4 Gbps / 128 Gbps n x 6.25 Gb/s (n=4 \rightarrow 25 Gb/s) 800 Mb/s 10 Gbps 0.4 Gb/s (1394a) or 0.8 Gb/s (1394b) 1.45 Gb/s (max. 2.9 Gbps)

Active Silicon (CXP-12)

7/28

HDSDí

Imperx Cheetah (10GigE Vision)

MicroTCA.4 for Industry and Research

Dariusz Makowski MTCA Workshop, December 1, 2020

Various Cameras and Interface Standards

- Camera Link
- ✓ Camera Link-HS
- ✓ CoaXPress 2.0
- ✓ GigaVision 800
- ✓ 10 GigE Vision 10 G
- ✓ IEEE1394/Fire Wire
- ✓ HD-SDI

2.4 Gbps / 128 Gbps
n x 6.25 Gb/s (n=4 → 25 Gb/s)
800 Mb/s
10 Gbps
0.4 Gb/s (1394a) or 0.8 Gb/s (1394b)
1.45 Gb/s (max. 2.9 Gbps)

2.04 Gb/s, 5.44 Gb/s, 6.8 Gb/s

SCD Hercules (CL)

Active Silicon (CXP-12)

8/28

HDSDí

Imperx Cheetah (10GigE Vision)

MicroTCA.4 for Industry and Research

Dariusz Makowski MTCA Workshop, December 1, 2020

PCO Edge 5.5

Emergent HR-12000-S-C

CONTROL AND DATA COUISITION LABORATORY

Dariusz Makowski MTCA Workshop, December 1, 2020

Supported IR Cameras with Developed Frame Graber

SCD Hercules

Dariusz Makowski MTCA Workshop, December 1, 2020

10/28

IRCAM Caleo 768k L

Universal Frame Grabber Module for MTCA.4

Frame grabber is composed of:

- FMC carrier
- FMC modules supporting various camera interfaces (8 standards)

In addition we need:

- IP core for selected camera interface
- Dedicated camera library

Dariusz Makowski MTCA Workshop, December 1, 2020

FMC Carrier Modules

Frame grabber is composed of:

- FMC carrier
 - Artix 7 FPGA (<6.5 Gb/s)
 - Zynx US+ SoC (>6.5 Gb/s)
- FMC modules supporting various camera interfaces

(8 standards)

Software support:

- IP core for selected camera interface
- Common Linux driver
- Dedicated camera library (GenICam)

Dariusz Makowski MTCA Workshop, December 1, 2020

Scalable PCIe Link to External CPU

- Compliant with MTCA.4.1 spec
- Configurable PCIe link to Root Complex
 - 1x PCIe x16
 - 2x PCIe x8
 - 5x PCIe x4
- Support various modes, including daisy chain
- PCIe gen. 4 (256 Gb/s)
- Cable length: 1-10 m
- Support for DMA-over PCIe
 - Image processing with GPU DirectDMA transfers
- Uses NAT-MCH-PHYS80

Dariusz Makowski MTCA Workshop, December 1, 2020

Smart MMC and RMC solution for xTCA

- ASIC-like solution:
 - Miniature size 15 mm x 15 mm x 2 mm
 - Cost-effective solution
- Looking for solution for both:
 - AdvancedTCA (Carrier and RTM)
 - MicroTCA (AMC, RTM)
 - Basic and Advanced versions
- ARM microcontroller
 - 1 or 2 ARM cores
 - Low consumption power
 - Ready to be integrated with RTM
- Programmable logic with 6-7x I2C interfaces
- Under development now at TUL-DMCS

MMC/RMC – MicroTCA Solution #1

- Support for
 - RTM
 - 2x FMC
 - **FPGA**
- Interfaces:
 - 6x 12C
 - 2x SPI
 - 2x UART
- Separate power domains:
 - Management (+3V3)

DESY

CXAXDXAXQ

CONTROL AND DATA

Dariusz Makowski

Payload (+12 V)

16/28

MicroTCA.4 for Industry and Research

MMC/RMC – MicroTCA Solution #2

- Programmable solution based on SoC
- Optimised BOM cost: ca 25 EUR per device (RTM support, excluding sensors)
- Provides up to
 - 100 programmable lines with max. 4 voltage domains (1.8 V 3.3 V)
 - 10 programmable PLD blocks
 - I2C Multi-Master/Slave interfaces
 - Quad SPI transceivers
 - UARTs (virtual COM via USB)
 - USB connection (up to 8 endpoints)
- Tested with 2 AMC modules and 1 RTM
- Working on universal firmware xMC framework supporting standards: AMC (MMC, RMC), FMC, ATCA (IPMC)

MicroTCA – MMC Implementations

MicroTCA.4 for Industry and Research

Dariusz Makowski MTCA Workshop, December 1, 2020

Basic-AMC – the low-cost MicroTCA.4 Compliant Carrier Module

See presentation on Wed 2/12, 15:05

See presentation on Thu 3/12, 15:15

Dariusz Makowski MTCA Workshop, December 1, 2020

Bolometer System for W7X

- The system will span three custom modules and an external sensor
- Application of AC excitation and in-phase detection minimizes the drift
- Not much memory or processing power needed per channel
- Low-latency link to data hub is required

Basic-AMC Features

- Based on cost-effective TE0714 FPGA module
- Offers multi-gigabit connectivity:
 - PCIe x2 gen.2 link
 - two additional custom links, up to 6.25 Gb/s
- 90 FPGA I/O signals on Zone 3 and three LVDS clocks (the clocks are also connected to the FPGA)
- The PCB has only 6 metal layers, including two full ground planes

Dariusz Makowski MTCA Workshop, December 1, 2020

High Power Piezo Driver - Motivation

- This work is being done in frame of the Polish in-kind delivered by the Polish Electronic Group (PEG) within in-kind agreement signed between PEG and ESS on 2016-11-08, (together with Schedule AIK 8.2, signed 09.2017, ESS-0060409)
- Department of Microelectronics and Computer Science, Lodz University of Technology as a member of PEG consortium is responsible for piezo driver system delivery for elliptical cavities of ESS linac.

MicroTCA.4 for Industry and Research

Dariusz Makowski MTCA Workshop, December 1, 2020

Piezo Actuators Planned for ESS Accelerator

Cavity type	Piezo actuator type
Medium Beta cavities	Noliac NAC 2022 H30
High Beta cavities	Noliac NAC 2022 H30
Spoke cavities	Noliac NAC 2022 H72

Piezo type	Noliac NAC 2022 H30	Noliac NAC 2022 H72
Dimensions	10 x 10 x 30 mm	10 x 10 x 72 mm
Cell material	NCE51F	NCE51F
Number of cells	14	35
Total capacitance	5.54 μF	13.86 μF
Max. free stroke	46.2 μm	115.5 μm
Blocking force	4200 N	4200 N
Max. operating voltage	200 V	200 V
Max. operating temperature	200°C	200°C

MicroTCA.4 for Industry and Research

HPD-200 – Revision 2.0

- 2 bipolar actuator channels
 - 200 W (power from external PSM)
 - 100 W (power from MTCA.4 chassis) using Zone 3
 - Working on new MTCA solution for driving power >200 W
- Class-D amplifiers
- Output voltage +/- 190 V (380 Vpp)
- Operating in actuator and sensor mode
- Uses internal or external power supply module (+/- 100 V)
- Tested with capacitive load up to

160 uF

MicroTCA.4 for Industry and Research

Piezo Power Supply Module PPSM-200

- Provide power supply +/- 100 V
- Maximum power ~400 W
- Selected power supply modules with good MTBF (>2.000.000 hours)
- Build in diagnostics and simple management
- Unified internal connectors simplify manufacturing and maintenance

Dariusz Makowski MTCA Workshop, December 1, 2020

Thank you for your attention

Dariusz Makowski MTCA Workshop, December 1, 2020

