

Status of MicroTCA.4 Technology at Sirius

MTCA Workshop 2020 – Hamburg (Virtual)

Daniel Tavares

December 1st, 2020

CNPEM Sirius – the 4th generation light source in Brazil

Outline

- MicroTCA.4 at Sirius

NIZACÃO SOCIAL DO MCTI

- AMC FMC Carrier
- New Developments and Highlights
- openMMC
- Integration to Control System
- Operations Experience
- Conclusion

Sirius

- 4th generation synchrotron light source
- Natural emittance 0.25 nm.rad at 3 GeV
- Diffraction-limited for 10 keV photons

- LINAC LLRF Crate provided by SINAP
 - 3x Struck SIS8300-L2
 - 3x Struck DRTM-DWC8VM1
 - FPGA gateware and software provided by SINAP

- BPM Electronics and Orbit Feedback Crate
 - Pentair/Schroff 12-slot Crate with JSM
 - N.A.T. PHYS80 MCH + µRTM COMex CPU
 - Wiener Low Noise 1 kW Power Supply (redundant)
 - CAENels FMC-Pico-1M4
 - CAENels FMC-4SFP+
 - Open Hardware AMC FMC Carrier (AFC)
 - Open Hardware FMC ADC 16-bit 250 MS/s
 - Open Hardware FMC POF (plastic optical fiber)
 - Open Hardware µRTM 8-SFP
 - Open Hardware RTM Fast Orbit Corrector Power Supply
 - Open source MMC firmware (openMMC)
 - Open source gateware and software for controls and data acquisition

Linac LLRF 1 crate

BPM and FOFB

21 crates

- AMC FMC Carrier (AFC)
 - Cheap: based on Xilinx Artix-7 200T (< 200 USD)
 - Versatile: 2x HPC FMC slots, RTM D1.3 slot, flexible clocking scheme, 2 GB DDR3 memory
 - Open Hardware design available at: https://www.ohwr.org/project/afc

• AFC v3.1

- Needed design improvements
- Recent evaluation from MTCA TechLab orded by GSI

• AFC v4

- The project is led by WUT (Mikolaj Sowinski, Tomasz Przywózki and Grzegorz Kasprowicz)
- Clean up and other improvements on schematics
- Replace the JTAG switch (SCANSTA111) with a simpler mechanism to allow access to FMC JTAGs
- Simplification of I²C bus
- Replace ADN4604 (16x inputs, 16x outputs) clock crossbar by IDT 8V54816A (16x bidirectional input/outputs)
- Reduce board thickness
- Provide alternative assembly option:
 - Option 1: 2x HPC FMC slots + partially pin assigned RTM
 - Option 2: 1x HPC FMC slot + 1x LPC FMC slot + fully pin assigned RTM slot
- M-LVDS circuit improvement: higher speed, lower skew

CNPEM MTCA TechLab investigation on AFC v3.1

ORGANIZAÇÃO SOCIAL DO MCTI

GSI AFC PCIe issue investigation

B. Issues found on AFC Board

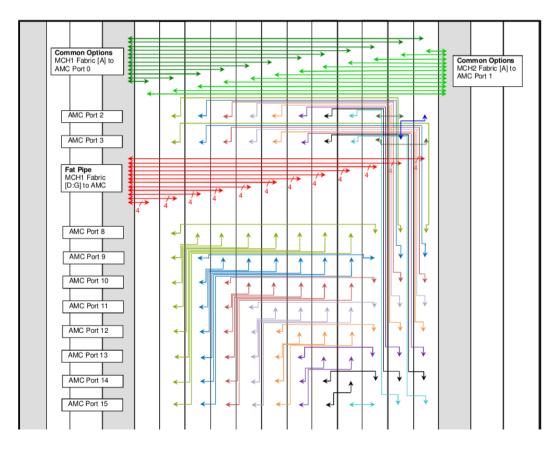
During the measurement/investigation session, many issues of the AFC board were identified that lead to reduced board performance.

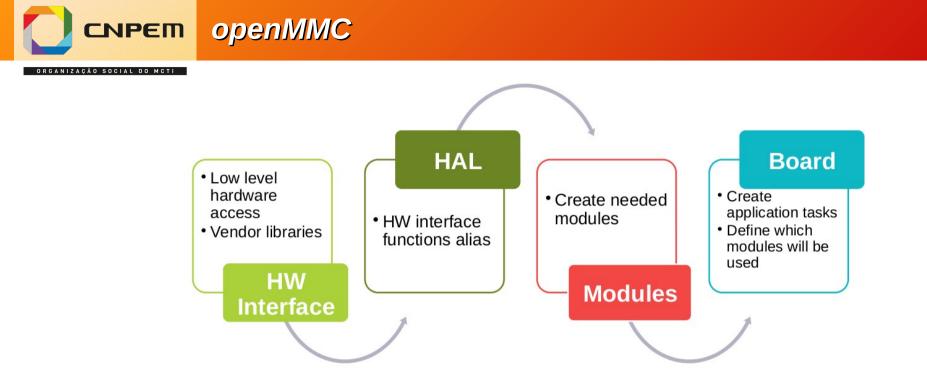
Issue	Effect
Wrong termination voltage on clock multiplexer	wrong duty cycle/excessive jitter (not obeserved)
Clock distribution via passive unmatched	reflections and marginal signal integrity on
Y-branch	clock line (observed)
Connection between chassis and logic ground	violation of the standard, return currents via front panel
Inadequate filtering on MGTAVTT power rail	excessive noise on transceiver power
(described before)	(observed)
Inadequate layout for MGTAVTT power rail: single via (described before)	insufficient transient load regulation (not observed)
Shared power rail of MGTAVCC and FPGA	excessive noise on transceiver power
core power (described before)	(observed)
Board thickness violation	violation of the standard
Wrong pull-up resistors for Si570	Si570 can not be programmed
Current leaking between 3V3MP and 12VPP	startup issues of components (not observed)

Courtesy Tobias Hoffmann (GSI)

CNPEM Fast Orbit Corrector Power Supply - RTM-LAMP

ORGANIZAÇÃO SOCIAL DO MCTI


- Specifications:
 - 12 channels
 - +- 1 A per channel
 - 10 kHz small signal bandwidth
 - Nominal Load: 1 Ω, 3.5 mH
 - Designed to comply with the MicroTCA RTM specification
 - High efficiency DCDC converter (> 92%)
 - Supports an external 12V power for applications that require more than 36W
 - Can be assembled with a heat sink if necessary
 - First prototype boards expected to arrive at the end of January 2021


- Open Hardware design available at:
 - Hardware: https://github.com/lnls-dig/rtm-lamp-hw
 - Gateware: https://github.com/Inls-dig/rtm-lamp-gw

• 11-slot full mesh on AMC ports 2-3 and 8-15

Courtesy Schroff

- openMMC has been adopted by other facilities
 - openMMC is built on top of FreeRTOS
 - Adopted by Sirius and CERN collaborative development
 - GPL code available at: https://github.com/lnls-dig/openMMC



• Tool for removing AMC modules

ORGANIZAÇÃO SOCIAL DO MCTI

Gustavo Bruno Fernando Cambaúva Ricardo Fujihira

- Heidelberg University's epics-ipmitool [1]:
 - Depends on external ipmitool
 - Template EPICS database created via iocsh command ipmiDumpDatabase
 - Seems unmaintaned
- SLAC's ipmiComm [2]:
 - No external dependencies (only the typical asyn)
 - Predictable EPICS database templates already in place
 - Little support at the time (2018-2019)
 - Maintained by SLAC and other partners

[1] https://github.com/sus-ziti-uni-hd/epics-ipmitool[2] https://github.com/slac-epics-modules/ipmiComm

[3] https://github.com/frib-bim/mtca_ipmi

- FRIB's mtca-ipmi [3]
 - Depends on external ipmitool (breaks compatibility with each version)
 - EPICS database templates already in place
 - Maintained by FRIB
 - Easiest to setup and use (with example GUI for 12slot crate)

FRIB's mtca-ipmi was selected to use at Sirius: ٠

- But still searching for a module non-dependant of ipmitool —
- SLAC module (and others) could be revisited in the future —

e Edit Search Bun	CS-Studio W	indow Help					CS-St									 IA-04RaB	PM:D	I-MTCACrate:	AMC01
lai 📾 🔛 - 💁	- 4 2 (3 1 🖬 -	122 0	4 -											Access	FMC1			
-04RaBPM:DI-MTCACr	ate: 23												କ୍ର୍	130%	¢ · ¢ · ⁼	FMC1 +12V		FMC1 VAD	FMC1 +3.3V
TM Slots	RTM 1	RTM 2	RTM 3	RTM 4	RTM 5	RTM 6	RTM 7	RTM 8	RTM 9	RTM 10	RTM 11	RTM 12	Power	PM02	PM04	12.42 V			3.33 V
MC Slots	AMC 1	AMC 2	AMC 3	AMC 4	AMC 5	AMC 6	AMC 7	AMC 8	AMC 9	AMC 10	AMC 11	AMC 12	Board Name Curr MCH1		PM-AC10	FMC1 +12V 0.10 A		FMC1 VADJ Curr 0.00 A	FMC1 +3.3V Cur
ower Status	On	Off	Off	Off	Off	Off	On	On	On	On	On	On	Curr MCH1	3.85 A 0.00 A	0.00 A 0.00 A	I out of A			
oard Name	AFC Timir	Empty	Empty	Empty	Empty	Empty	AFC 3.1	Curc Top CU	0.00 A	0.00 A	FMC2								
MC1 12V Volt	12.42 V		100				12.35 V	12.42 V	Curr Bat CU	0.85 A	0.00 A	FMC2 +12V		FMC2 VADI	FMC2 +3.3V				
MC1 VADJ Volt	2.43 V						2.43 V	Curr AMC	1.00 A	0.00 A	12.42 V		2.43 V	3.33 V					
MC1 3V3 Volt	3.33 V						3.33 V	3.33 V	3.33 V	3.39 V	3.33 V	3.33 V	Curr AMC2	0.00 A	0.00 A	12.42 V		2.45 V	
MC2 12V Volt	12.42 V						12.35 V	12.42 V	Curr AMC3	0.00 A	0.00 A	FMC2 +12V	Curr	FMC2 VADJ Curr	FMC2 +3.3V Cur				
MC2 VADJ Volt	2.43 V						2.43 V	Curr AMC4	0.00	0.00 A	0.06 A		-0.03 A	0.10 A					
MC2 3V3 Volt	3.33 V						3.33 V	3.39 V	3.33 V	3.39 V	3.39 V	3.39 V	Curr AMC5	0.00 A	0.00 A				
MC1 12V Curr	0.10 A						0.00 A	0.00 A	0.03 A	0.03 A	0.03 A	0.03 A	Curr AMC6	0.00 A	0.00 A	Temperature			
MC1 VADJ Curr	0.00 A						0.16 A	0.22 A	0.16 A	0.29 A	0.19 A	0.19 A	Curr AMC7	2.85 A	0.00	TEMP FPGA		TEMP CLK SWITCH	TEMP DCDC
MC1 3V3 Curr	0.00 A						2.78 A	2.75 A	2.75 A	2.78 A	2.75 A	2.82 A	Curr AMC8	2.85 A	0.00 A	44.0 C		35.0 C	36.0 C
MC2 12V Curr	0.06 A						0.00 A	0.00 A	0.00 A	0.00 A	0.03 A	0.00 A	Curr AMC9	2.85 A	0.00 A				_
MC2 VADJ Curr	-0.03 A						0.16 A	0.22 A	0.26 A	0.29 A	0.26 A	-0.03 A	Curr AMC10	2.85 A	0.00 A	TEMP DCDC		TEMP UC	1
MC2 3V3 Curr	0.10 A						2.72 A	2.75 A	2.78 A	2.82 A	2.85 A	0.00 A	Curr AMC11	2.90 A	0.00 A	36.0 C		32.5 C	
emp FPGA	44.0 C						54.0 C	54.0 C	54.0 C	55.0 C	54.0 C	50.0 C	Curr AMC12	1.90 A	0.00 A				
emp UC	32.5 C						48.5 C	46.5 C	47.0 C	50.5 C	48.5 C	42.0 C	Curr Sum	22.80 A	0.00 A	-			
emp ClkSwitch	35.0 C						46.5 C	44.0 C	44.0 C	47.0 C	46.0 C	39.5 C				IA-04RaBPM	:DI-MT	CACrate: AMC01	FMC1Volt12V-M
emp DCDC	36.0 C						40.0 C	40.5 C	43.5 C	41.0 C	39.5 C	37.5 C				Description	FMC1	+12V	
emp RAM	33.5 C						37.0 C	38.5 C	39.5 C	38.0 C	37.0 C	34.5 C							
ower Control	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable	Enable				Current Read	12.42	V	
Reset Crate	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable	Disable				Threshold A	larms		
	Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset				Critical High	12.80	V	
01																High	12.48	v	
an 1 1980 RPM	Fan 4	1680 RP	м Те	mp1 3	8.0 C	3.3 V	3.19 V									Low	11.52		
an 2 1980 RPM					8.0 C	12 V	12.54									Critical Low	11.20		
an 3 1980 RPM		1680 RP														Chucai LOW	11.20	v	
02																Sensor Ran	e		
an 1 1920 RPM	Fan 4	1500 RP	м Те	mpl 3	4.0 C	3.3 V	3.19 V									Max	0.00 V		
an 2 1980 RPM	Fan 5		_		2.0 C	12 V	12.59									Min	0.00 V		
																	0.00 V		

11

• µRTM COMex CPU gets stuck from time to time

- No entries in syslog and persistent logs in systemd-journald
- No crash dump when using kdump
- MCH notices no failure all sensors are good
- No ping response, no display port nor USB ports activity

· MCH gets stuck from time to time

- ssh, telnet and web interface is unresponsive
- Only restored after power cycle

• AFC spontaneous resets

- Sporadic power cycle
- Reconfigures FPGA
- PCIe link goes down and up
- AFC loses communication with MCH
 - Only recoverable by hard_reset command

· One of a kind mysterious event

- AFCs from 3 distant crates (different machine sectors) simultaneously fail
- MCH reports overcurrent when trying to power cycle the boards hard_reset doesn't help
- Only recovered when redundant Power Module was manually powered on remote commands have no effect

- MTCA.4 crates are routinely used in operations of all Sirius machines
 - Linac: LLRF
 - Transfer lines, booster and storage ring: electron and photon BPMs, Fast Orbit Feedback, energy ramp power supplies' timing
- Standardized hardware platform allowed system evolution by mixing open hardware and COTS modules
- Open source MMC code (openMMC) was key to improve system reliability
- Special 11-mesh backplane for low latency feedbacks
- New developments:
 - RTM Fast Orbit Corrector Power Supply RTM-LAMP
 - Module mechanical extractor
 - AFC v4 (led by WUT)
- Many open issues to be tackled machine operations are significantly impacted by MTCA.4 crates failures

Thank you!

Brazilian Synchrotron Light Laboratory

augusto.fraga@cnpem.br

daniel.tavares@cnpem.br

lucas.russo@cnpem.br