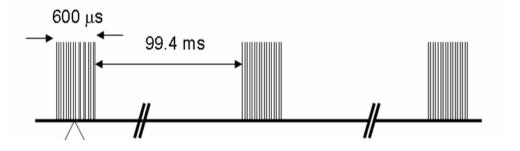
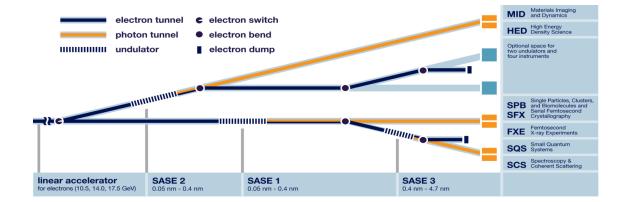
MicroTCA applications at the European XFEL Experiments - Experience and outlook

Bruno Fernandes Fast Electronics Team Leader EEE Group

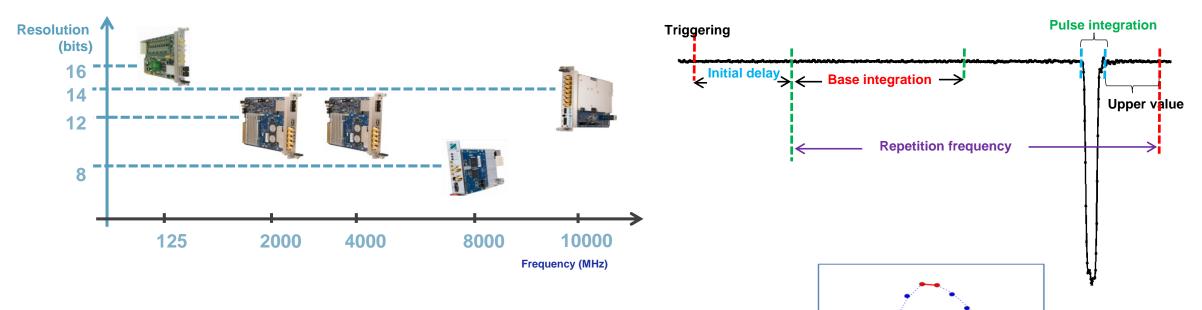
Hamburg, 2 December 2020 9th MicroTCA Workshop for Industry & Research




XFEL Overview

- The European XFEL generates up to 2700 X-Ray pulses
 - Inter pulse separation of 220 ns
 - Train repetition of 10 Hz

First user operation started in September 2017


MicroTCA in XFEL

- MicroTCA platform is the key component for
 - Timing distribution (both in and outside the crate)
 - Digitizer raw and process data
 - Detector triggering and synchronization
- At photon beam lines, experiments and related laboratories at XFEL are **42 MicroTCA crates (more already planned)**
 - 65 Timing Systems
 - 170 fast data channels (SIS8300, 16 bit @ 125MHz)
 - 68 high speed data channels (ADQ412, 12 bit @ 2 GHz)
 - XFEL will continue to grow (SASE4 and 5, new instruments)
- On Call Duty has significant **low activity** when compared to other groups
 - Of 16 calls, 10 were not hardware related
 - Stability of MicroTCA and XFEL's FPGA solutions

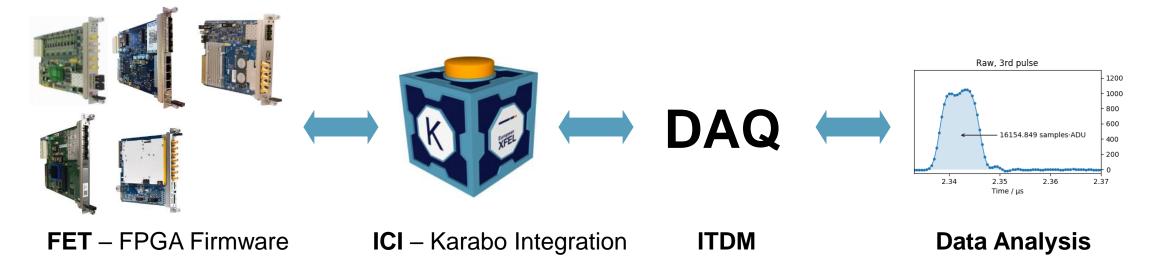
Linear interpolation at the zero crossing

FPGA Signal processing

- Most MicroTCA are used for hosting **Digitizers**
 - Raw data acquisition is the primary usage of these devices
 - Hardware algorithms such as Peak Integration, Peak Detection, **Zero Surpression** are being used more commonly.

Zero Surpression are being used more commonly

CPU installation/maintenance with Foreman and Puppet


- OS installation + Puppet via network
 - New CPU shows up on Network
 - Foreman install OS and configures target Puppet Manifest
 - Puppet guarantees that CPUs have the same environment
 - Monitor Host resources

- This solution as proven very successful for maintenance, testing and migration of our MicroTCA CPUs
 - Ubuntu 20.04 transition
 - Roll out of updates/bug fixes
 - Management of hosts groups
- This process is now nearly 100% done automatically
 Next step is FPGA/MCH management

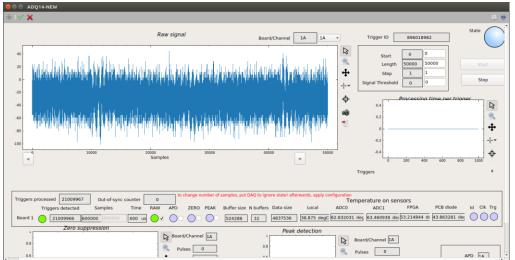
XFEL MicroTCA in 2020

The COVID pandemic allowed us to focus in **review and development**

- Integration of new Digitizers
- Review of current hardware (FPGA/MicroTCA) based solutions
- Review of digitizer usage by the Instruments
 - Digitizer Integration Effort

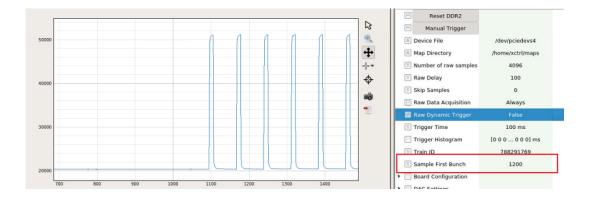
Integration of new ADC cards

ADQ7


1 channel @ 10GSPS or
 2 channels @ 5 GPSP

ADQ14

4 channel @ 1GSPS


Review of current ADC cards
 Integration of newer versions - SIS8300 KU
 Interested in new ADC cards

Hardware Bunch Pattern Decoder

🔻 📃 Bunch Pattern Settings		
🔽 Enable	True	True
📃 Light Source	SASE1	SASE1
Decode PPL	False	False
📃 Pulse Probe Source	None	None
📃 Bunch pattern logic	Or	Or
T First Bunch	50	
I Number of Bunches	7	
I Bunch Pattern Period	24	24

Integration of Bunch Pattern Decoder

- Decoding of pulses present in the Train according to FEL and PPL parameters
 - OR/AND operation between SASE and PPL
- Also accepts User Bunches
- Provides **number of bunches**, **First bunch and Bunch IDs** as well as the <u>sample position of the first</u> <u>Bunch</u>
 - Adjusting the timing trigger so that these two coincide effectively aligns the digitizer with the Machine Pulse Pattern

Hardware Bunch Pattern Decoder

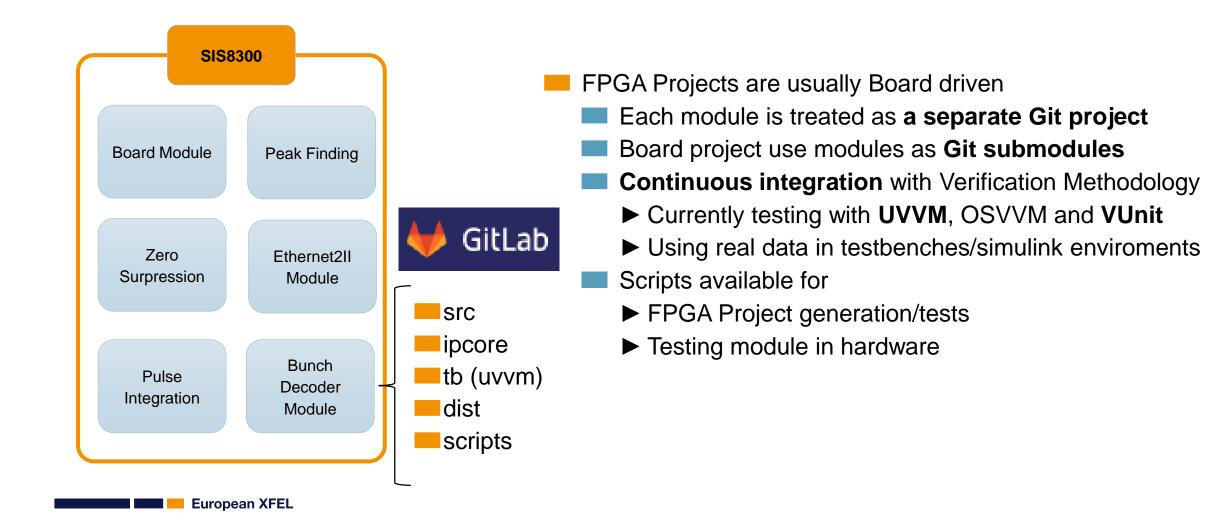
How the Digitizers use the Bunch Pattern Decoder

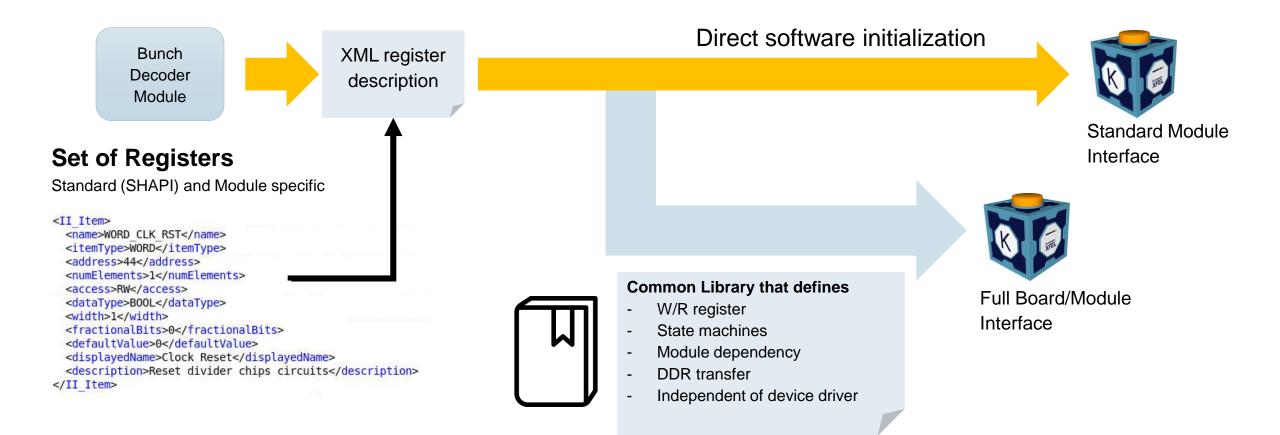
- Number of pulses \rightarrow if 0, no interesting bunches \rightarrow disable Trigger = Conditional Trigger
- Sample of First Bunch → delay the trigger by this value → sampling of raw data at first Bunch = Dynamic Trigger
- - Only need to configure number of samples per Integration
 - ► Use samples before the First Pulse for baseline calculation → Dynamic Baseline Calculation

Also used in AMC Boards interfacing 2D Detectors

VETO information updated according to Bunch Pattern Table

Ethernet communication


- Ethernet connection for FPGA configuration, monitoring and raw/process data
 - Updated design
 - Integrated ARP protocol
 - ► ARP request & announcement
 - Assign/Update MAC address on the fly
 - Supports IPv4/UDP
 - ► Data transfer in XFEL is based on UDP
 - ► TCP being implemented for configuration
 - 10Gb Interfaces for Raw data


Ethernet XFEL Data Module

> Ethernet 2 II Module

FPGA Continuous Integration

FPGA Software Integration

Programmable Logic Controllers (PLC) systems – simplified overview

- Terminals as interface to h/w
- PLC CPU
 - Connects via cables to Terminals
 - Implements programs for control

Computer

- connects to PLC CPU
- Implements Control System
- XFEL PLC numbers
 - PLC CPUs: 120
 - PLC Modules / crates: >580

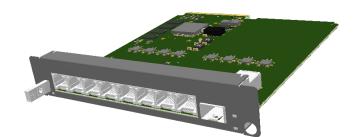
European XFEL

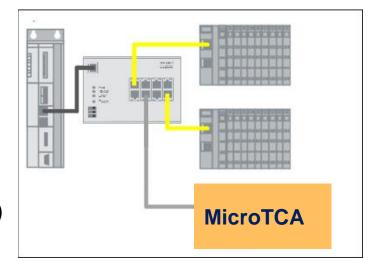
PLC Terminals (i.e. digital input)

PLC Crate Signal LED1 Signal LED3 Signal LED5 Signal LED7 Input 5 _____ Power contact 0 V TwinCAT-Master -----

PLC controls motion, vacuum, temperature, power, protection,...

MicroTCA \Leftrightarrow PLC Communication

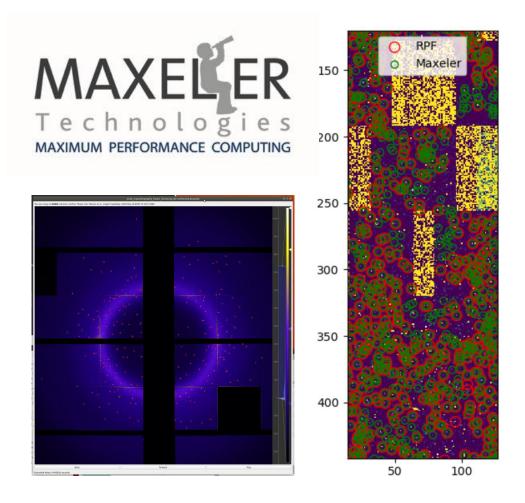

- Some current examples at XFEL include
 - TrainID via RS232 for Unique ID / Time-stamping
 - Alarms from PLC connected to MPS AMC module
 - More and more Instrument setups want to use PLC together with MicroTCA signals
 - ► Open shutters if..., forward trigger when..., start after "OK" from this device, etc.


NAT Ethercat AMC solution - NAT-AMC-ZYNQUP-ECAT

- Up to 8 ECAT networks
- Direct communication of Information (TrainID, Beam Modes...)
- Use of FPGA processing to communicate PLC actions

Bunch Pattern decoder information

- Distributed Clocks and synchronisation
- Setup automation based on other AMC information
 - P2P/Ethernet communication


 See presentation by Herbert Erd Tomorrow @ 15:30
 Synchronization several EtherCAT networks through mTCA

Outside of MicroTCA...

FPGA based online calibration and image processing
 Project for processing of data from 2D Detectors
 Using platform from Maxeler Technologies
 Dell Server System w/ 4 Alveo 250 Cards
 Calibration and Peak Finding algorithms implemented
 Latency reduced from 2min to ~100ms

FPGA for Machine Learning Applications

- Collaboration with other facilities is more than welcome
 - FPGA standardization
 - MicroTCA Setups/Applications
 - Brain storming, knowledge transfer...

Thanks for the attention

Questions, ideas, experience, advice?

Fast Electronic Team

bruno.fernandes@xfel.eu

hamed.sotoudi.namin@xfel.eu

frank.babies@xfel.eu