Development of the MicroTCA Standard

Preparing the Next Generation

Kay Rehlich, DESY
2. Dec. 2020

MTCA Specifications

MicroTCA.0 2006

MicroTCA.4 2011

MicroTCA.4.1 2016

... 2021 ?

Requirements for the Next Generation

- Keep the standard alive for a long time
 - Adapt state-of-the-art technology

- Backward compatibility:
 - All existing AMC modules MUST be usable
 - Old power modules should be usable (with 1 kW limit)

Motivation: Technology Trends

PCI	Introduced	Line code	Transfer rate	Throughput (simplex)					
Express version				×1	×2	×4	×8	×16	
1.0	2003		2.5 GT/s	250 MB/s	0.50 GB/s	1.0 GB/s	2.0 GB/s	4.0 GB/s	
2.0	2007	8b/10b	5.0 GT/s	500 MB/s	1.0 GB/s	2.0 GB/s	4.0 GB/s	8.0 GB/s	
3.0	2010		8.0 GT/s	985 MB/s	1.97 GB/s	3.9 GB/s	7.88 GB/s	15.8 GB/s	
4.0	2017	128b/130b	16.0 GT/s	1969 MB/s	3.94 GB/s	7.9 GB/s	15.75 GB/s	31.5 GB/s	
5.0	2019	128b/130b	32.0 GT/s	3938 MB/s	7.88 GB/s	15.8 GB/s	31.51 GB/	63.0 GB/s	

Transfer Rate 4 Lanes / Specs ready (Test specs + 1 year)

Technology Trends: CPU & FPGA

Defines the direction of technology

- Client type modules up to 200 Watt
- Up to 49 PCle gen 5 lanes
- PICMG, to be published

Actual design:

Intel 11th Gen: PCIe gen 4 ——

Other available processors:

- AMD Ryzen: PCIe Gen 4
- Apple M1: PCle gen 4

@ SECO

FPGA & PCI board

- PCIe gen 4, 32 Gbps
- ≤ 225 W

@ Xilinx® Alveo™

PICMG Working Group

Initial Executive Members ... 14.11.2019

ESS
DESY
Lodz University of Technology
N.A.T.
nVent

Chair Editor Secretary Kay Rehlich, DESY
Heiko Körte, N.A.T
Thomas Holzapfel, powerBridge

+ Members of working group ... Jan 2020

Amphenol
Atom Computing
BAE Systems
Comtel
Concurrent Technologies
Embeck
IOxOS
MicroLab
ORNL
Pixus Technologies
Positronic
powerBridge
Samtec
VadaTech
Yamaichi

Hold meetings Participants Ø

35 18

Challenges: Speed

PCle gen 5

- AMC connector probably can do 32 GT/s
- Simulation of a full channel still to be done w/ newest PCI-SIG test specs
- Routing is not simple, high speed PCB material is required
- 100 G Ethernet
 - Simulation shows that 25 GT/s are possible
- Main challenge is the crosstalk
- We think that PCIe gen 4 is possible
- Provide PCle x8 or x16 with two connectors
 - —> up to factor 8 or 16 more throughput & lower latency than today!

AMC Connector Options

Harting connector does not allow > PCIe gen 3 (remains backward compatible)

Options for the AMC are:

- PCB direct contacts
- Yamaichi connector

Second connector could be used for PCIe x8 or x16 and more AMC - AMC connectivity

Full AMC Compatibility

Challenges: Power

200 W per slot

- Limitation of AMC connector: 8 pins @ 10.8 V = 98 W
- Limitation of Power Module connector: 100 W ... 114 W

Solution:

- Use 9 pins on AMC + 2nd connector
- Use 2 Power Module connectors

2 kW crate cooling

- Two times more airflow
- Fans need more power
- See next talk—> Dietmar Mann (nVent)

Possible Crate Layouts for 2000 Watt

Half Redundant

Full Redundant

No restrictions for other layouts or smaller crates

Goal: max. 2000 Watt per Crate

	#		TE	Ø Power	Tot Power
PM	2	6	12		
AMC mid	6	4	24	70	420
AMC full	6	6	36	160	960
MCH hub	1	6	6	120	120
MCH base	2	3	6	50	100
Fan	2			200	400
Sum			84		2000

19"

"Typical" power of a full crate <= 2000 W

Split MCH: Base and Hub

A separate Hub has advantages:

- More fat pipes possible
- Self-contained hot-swap
- Same power channel w/ Base
- Application specific designs possible
- Independent upgrade
- Better cooling for next gen switches

Hub in the middle of the crate to ease high speed links routing and damping

MCH Base: crate management Ethernet hub (ports 0, 1) Clock module

Split MCH Flexibility

Redundant, non-redundant and hot-swap options

Conclusions

Tough goals:

- 2 kW per crate
- 200 W max. per AMC slot
- 32 GT/s PCle gen 5

Promising results:

- 25 GT/s simulation ok
- Solution for power (2kW/200W)
- Split MCH provides more fat pipes (e.g. PCIe lanes)

Still lots of work to be done:

- PCle gen 5 simulation
- Find best cooling solution
- Definition of connectivity
- Definition of management
- Further items:
 - Ports 2, 3 protocols
 - FMC management
- •
- Building prototypes
- Writing specs