

UHH – DESY MSK

02.12.2020

A LISA PHASEMETER BASED ON MICROTCA AS GROUND-SUPPORT EQUIPMENT

O. GERBERDING, J. MARJANOVIC, S. CHAOUCH-BOURAOUI, S. FARINA, J. ZINK, A. BRUNZEL, H. SCHLARB

CREDIT: GWPLOTTER.COM, MOORE, CHRISTOPHER J., ROBERT H. COLE, AND CHRISTOPHER PL BERRY.

CREDIT: GWPLOTTER.COM, MOORE, CHRISTOPHER J., ROBERT H. COLE, AND CHRISTOPHER PL BERRY.

diss

 $\Delta L = 10 \cdot 10^{-12} \,\mathrm{m}^{-12}$

 $L = 2.5 \cdot 10^9 \,\mathrm{m}$

LISA METROLOGY

$\Delta v_{\rm max} \approx 15 \, \frac{\rm m}{\rm s}$ $\Delta f_{\rm D} \approx 15 \, \rm MHz$

 $\Delta \varphi < 6 \cdot 10^{-6} \, \mathrm{rad} @ \, \mathrm{mHz}$

LISA PHOTODETECTOR SIGNALS

ALL-DIGITAL PHASE-LOCKED LOOP

O. Gerberding et al. CQG 30, 23 (2013)

LISA INSTRUMENT

LISA PHASEMETER

Functions:

- Phase readout for 48 channels
 - ADC jitter correction
 - Thermal control
 - Readout of clock-tone sidebands
- Generation & distribution of constellation timing signals
- Data transfer and pseudo-ranging via PRN modulation and delay-locked loops
- Beat note acquisition via FFT
- Filtering and data decimation
- Laser frequency control

O. Gerberding et al., Rev. Sci. Inst. 86, 074501 (2015) S. Barke et al. Final Report, online (2014)

LISA PHASEMETER DEVELOPMENTS

O. Gerberding et al., Rev. Sci. Inst. 86, 074501 (2015) S. Barke et al. Final Report, online (2014)

LISA PM FLIGHT HARDWARE

LISA PM SIMULATOR

PROJECT: LISA GROUND-SUPPORT EQUIPMENT: DEVELOPMENT OF A PHASEMETER SIMULATOR AND AN OPTICAL TOOLSET (DLR 50 OQ 2001)

STARTED 10/2020

DURATION OF 3 YEARS

SUBCONTRACTOR

PRIME

FUNDING AGENCY

Gefördert durch:

Bundesministerium für Wirtschaft

aufgrund eines Beschlusses des Deutschen Bundestages

PM SIMULATOR - OVERVIEW

- Electrical ground-support equipment (EGSE) for assembly, integration, verification and testing (8-10 year period for LISA)
- Use available MicroTCA components as much as possible
- Develop three dedicated RTM (eRTM) modules to provide/simulate all PM interfaces and functions
- Transfer and adapt SL and SW to the new architecture
- Test the PM simulator (phase measurement and timing jitter fidelity are the most critical)

Preliminary design

828-3-5-3-5-

TIMING AND PHASE NOISE

- MicroTCA.4.1 is a perfect fit to implement the distribution of pilot tones for jitter correction
- Modules like DeRTM-LOG1300 can be adapted to simulate a LISA frequency distribution system
- Active temperature stabilization has already been implemented in RTMs

S. Barke et al. Final Report, online (2014) O. Gerberding et al., Rev. Sci. Inst. 86, 074501 (2015)

INTERFACES & PROCESSING

- DAMC-FMC1Z7IO is the central AMC module for our algorithms and processing
- We will make use of the various interfaces provided by the backplane
- This includes a high-speed, low latency, direct link between a phase readout AMC and the laser control AMC to implement the laser frequency control loops
 - SpaceWire FMC module will provide spacecraft-like interface

THANK YOU

www.physik.uni-hamburg.de/iexp/gwd