
A new major release of ChimeraTK ApplicationCore and DeviceAccess•

Martin Killenberg
Jens Georg, Martin Hierholzer, Christoph Kampmeyer, Tomasz Kozak,

Nadeem Shehzad, Jan Timm, Geogin Varghese

3rd December 2020

9th MicroTCA Workshop for Industry and Research
Virtual Workshop Hosted by DESY, Hamburg

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 1



ChimeraTK Overview

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

Application Core

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Your
Application

Module

Application Module

Application Module

DeviceAccess

Abstract access to different
hardware

Extensible backend interface

ApplicationCore

ApplicationModules implement
application logic

Multi-threaded

ControlSystemAdapter

Abstract interface to different
control system middleware

Integrate via configuration

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 2



ApplicationCore

Modules

Input/output variables

Application Modules
One thread per module

Special modules
Device module
Control system module

Connections

Mostly auto-generated

High locality

Algorithms don’t need to know
how variables are connected

Perfect modularity, as modules
are self-contained

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 3



ApplicationCore

Modules

Input/output variables

Application Modules
One thread per module

Special modules
Device module
Control system module

Connections

Mostly auto-generated

High locality

Algorithms don’t need to know
how variables are connected

Perfect modularity, as modules
are self-contained

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 3



ApplicationCore

Modules

Input/output variables

Application Modules
One thread per module

Special modules
Device module
Control system module

Connections

Mostly auto-generated

High locality

Algorithms don’t need to know
how variables are connected

Perfect modularity, as modules
are self-contained

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 3



ApplicationCore

Modules

Input/output variables

Application Modules
One thread per module

Special modules
Device module
Control system module

Connections

Mostly auto-generated

High locality

Algorithms don’t need to know
how variables are connected

Perfect modularity, as modules
are self-contained

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 3



ApplicationCore

Modules

Input/output variables

Application Modules
One thread per module

Special modules
Device module
Control system module

Connections

Mostly auto-generated

High locality

Algorithms don’t need to know
how variables are connected

Perfect modularity, as modules
are self-contained

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 3



Device Error Handling

Modules can just use the input and output process variables

Frameworks takes care of device opening and error handling

Concept presented on MTCA workshop 2019

ProcessVariable::read()

wait for recovery

report error

read request

backend.read()

send value

runtime_errorOK

recovery message

error message

Problems with the proposed solution

You don’t see which PVs are stale in the
application

The read() blocks where it should not
⇒ Back to the drawing board

Write extensive detailed specification first
Match details in DeviceAccess,
ApplicationCore and ControlSystemAdapter

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 4



Device Error Handling

Modules can just use the input and output process variables

Frameworks takes care of device opening and error handling

Concept presented on MTCA workshop 2019

ProcessVariable::read()

wait for recovery

report error

read request

backend.read()

send value

runtime_errorOK

recovery message

error message

Problems with the proposed solution

You don’t see which PVs are stale in the
application

The read() blocks where it should not
⇒ Back to the drawing board

Write extensive detailed specification first
Match details in DeviceAccess,
ApplicationCore and ControlSystemAdapter

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 4



Device Error Handling 2.0

Typical example: RF phase

Basically constant at one operation point

Slowly drifts with time

Assumption

When it’s not updating I can keep the system
running with the old value for a while

Requirements

I want to know when it’s not updating

I want to keep the old value

New concept

Send last good value with
DataValidity set to FAULTY

ProcessVariable::read()

dataValidity = FAULTY

report error

read request

backend.read()

send value

send previous value

runtime_errorOK

error message

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 5



Device Error Handling 2.0

Typical example: RF phase

Basically constant at one operation point

Slowly drifts with time

Assumption

When it’s not updating I can keep the system
running with the old value for a while

Requirements

I want to know when it’s not updating

I want to keep the old value

New concept

Send last good value with
DataValidity set to FAULTY

ProcessVariable::read()

dataValidity = FAULTY

report error

read request

backend.read()

send value

send previous value

runtime_errorOK

error message

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 5



Propagation of the Data Validity Flag

“PhaseDetector” has an error

All outputs marked as faulty

Framework tries to re-open

Application Modules

Small with correlated inputs
and outputs

If one input is faulty, all
outputs are faulty

Module stays active

Device Modules

Uncorrelated inputs and
outputs

rawData stays valid

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 6



Propagation of the Data Validity Flag

“PhaseDetector” has an error

All outputs marked as faulty

Framework tries to re-open

Application Modules

Small with correlated inputs
and outputs

If one input is faulty, all
outputs are faulty

Module stays active

Device Modules

Uncorrelated inputs and
outputs

rawData stays valid

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 6



Propagation of the Data Validity Flag

“PhaseDetector” has an error

All outputs marked as faulty

Framework tries to re-open

Application Modules

Small with correlated inputs
and outputs

If one input is faulty, all
outputs are faulty

Module stays active

Device Modules

Uncorrelated inputs and
outputs

rawData stays valid

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 6



Initial Values

Application start

I don’t know the current operation point

The RF phase can be anything between -180◦ and +180◦

There is no previous good value

New concept: Initial values

When constructed, process variables know they have not seen any data yet

When reading, it blocks until the initial value has been received

Advantages

Allows clean application start
ApplicationModules only start when they have all the data

No special exception handling

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 7



Initial Values

Application start

I don’t know the current operation point

The RF phase can be anything between -180◦ and +180◦

There is no previous good value

New concept: Initial values

When constructed, process variables know they have not seen any data yet

When reading, it blocks until the initial value has been received

Advantages

Allows clean application start
ApplicationModules only start when they have all the data

No special exception handling

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 7



Initial Value Propagation

Application start

Both devices still closed

Application modules waiting
for initial values

Control system has initial
values from persistency
layer

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 8



Initial Value Propagation

Devices are opening

“PhaseDetector” opens
successfully

“Controller” still waiting for
initial values

“ParameterCalculation” has
all initial values

“PhaseDriftCompensation”
still waiting for rawData

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 8



Initial Value Propagation

“ParameterCalculation”
is starting

sends controlParameter
to “Controller”

“PhaseDriftCompensation”
still waiting for rawData

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 8



Initial Value Propagation

Device “Controller” is fully
initialised

Sends rawData

“PhaseDriftCompensation”
has all initial parameters

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 8



Initial Value Propagation

“PhaseDriftCompensation” is
starting

Sends calibratedData

The application is up and
running!

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 8



Summary

ChimeraTK

Design modular, multi-threaded applications

Talk to hardware

Interface with the control system infrastructure

DeviceAccess 02.02 and ApplicationCore 02.00

Consistent device exception handling

Data validity propagation

Initial value propagation

LLRF software at the European XFEL and FLASH are currently
being updated!

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 9



Software Repositories All software is published under the GNU GPL or the GNU LGPL.

ChimeraTK source code: https://github.com/ChimeraTK

Ubuntu 20.04 packages are available in the DESY DOOCS repository.

Documentation and Tutorials

API documentation https://chimeratk.github.io/

Tutorials on the MicroTCA Workshop 2019 Indico page

e-mail support: chimeratk-support@desy.de

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 10

https://github.com/ChimeraTK
https://ttfinfo.desy.de/DOOCSWiki/Wiki.jsp?page=DOOCSStandaloneInstallation#section-DOOCSStandaloneInstallation-AddThePublicDOOCSPackageRepositoryToYourSystem
https://chimeratk.github.io/
https://indico.desy.de/indico/event/22525/session/9/contribution/64
mailto:chimeratk-support@desy.de


Backup

Backup

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 11



Push Type and Poll Type Variables

Push Type Variables

Producer/device is actively sending the
data

read() is blocking until new data is
received

Exception handling

In case of an error, exactly one exception
is send per variable (DeviceAccess layer)

The exception is caught in
ApplicationCore, and the last value is
send with dataValidity=Faulty

⇒ read() returns once with
dataValidity=Faulty

⇒ The next read() blocks until the next
value after device recovery has been
received

Poll Type Variables

Passive producer

read() is polling the latest value

read() is not blocking

Exception handling

The exception in the synchronous device
access is caught in ApplicationCore

Each read() returns immediately with
the last value and dataValidity=Faulty
until the device has recovered

Martin Killenberg (DESY) ChimeraTK ApplciationCore 02.00 and DeviceAccess 02.02 12


	Title
	ChimeraTK
	ApplicationCore
	Error Handling
	Error Handling 2
	Data Validity Propagation
	Initial Values
	Initial Value Propagation
	Summary
	Resources

	Backup
	Push Type and Poll Type Variables

