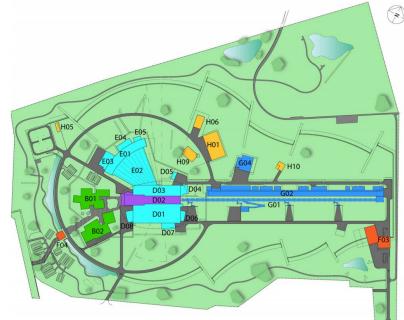


EPICS for IPMI in MTCA.4 systems at ESS

W. Cichalewski, W. Jałmużna, K. Kłys, P. Perek

ESS Principles



European Spallation Source – European Research Infrastructure Consortium

Parameter	Units	Value		
Energy	GeV	2.0		
Current	mA	62.5		
Pulse length	ms	2.86		
Pulse repetition frequency	Hz	14		
Average power	MW	5		
Power during pulse	MW	125		

G01 Accelerator Tunnel G02 Klystron Gallery G04 Cryo Compressor Building Target D02 Target Building Experimental Halls D01 Experimental Hall 1 D03 Experimental Hall 2 D04 Labs, Hall 2 D05 Substation D06 Substation D07 Labs, Hall 2 D08 Labs, Hall 2

Accelerator

- E01 Experimental Hall 3 E02 Beam Line Gallery E03 Labs, Hall 3 E04 Labs, Hall 3
- E05 Substation Utilities
- H01 Central Utility Building H05 Substation H06 Substation H09 Waste Building
- H10 Sprinkler Building
- Service F03 Logistic Center F04 Entrance Building

The European Spallation Source Design Roland Garoby et al 2018 Phys. Scr. 93 014001

ESS ICS HW/SW choices

- ESS has chosen MTCA.4 architecture as a leading hardware platform,
- Systems based on the MTCA.4:
 - RF/LLRF,
 - Beam instrumentation,
 - timing,
 - \circ others.
- As a base for control system development the EPICS environment has been chosen,
- dedicated ESS EPICS Environment (E3) framework has been developed.

MTCA.4 crate

ESS ICS Support in Software for MTCA.4

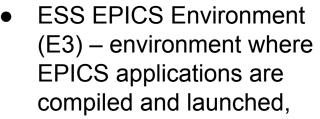
- Polish in-kind project realized by DMCS-LUT,
- Started 03.2018, duration 38 months,
- E4I EPICS for IPMI (Intelligent Power Management Interface),
- other two work units dedicated to:
 - BLM systems software firmware development
 - RTM Carrier (PEG-NCBJ) module software development.

E4I Scope:

- Interface to read/write and monitor the MTCA.4 system using EPICS
- Scalable module that can be used for any number of MTCA modules
- Designed and developed in accordance to the ESS guidelines and to other designers in order to keep some level of homogeneity

Functionality

- Getting:
 - field replaceable unit (MCH, PM, CU, AMCs, backplane) info and device ID,
 - activation (hot-swap) states,
 - sensor data record, sensor reading (including reading factors and hot swap handle) and provide human readable values,
 - sensor thresholds,
 - link capability and link status (via separate telnet session)
- Setting:
 - activation (hot-swap) states (shutdown/remove or activate) FRU,
 - sensor thresholds
- Receiving events (SEL readout)


Implementation Assumptions

- IOC can monitor several MTCA.4 chassis,
- Scalability running separate EPICS IOC for every MTCA chassis in the accelerator should be possible,
- Software should be fully compliant with NAT MCH it will be used for development and tests,
- Supported MicroTCA chassis types: 12 AMC (9U) and 6 AMC (3U).

Implementation - EPICS and E3 EPICS

- Experimental Physics and Industrial Control System (EPICS) – software toolkit for distributed control system,
- Bases on client/server concept,
- Data stored and accessed in Process Variables (PVs).

- Helps to keep consistency, easier long term maintenance,
- Focuses on device integration.

DMCS

Implementation - Overview (1/3)

- mTCA.4 systems are fully managed and provide a lot of diagnostic information for system infrastructure and pluggable modules,
- The information is provided by MCH using IPMI (Intelligent Platform Management Interface) protocol,
- The goal of the project was to integrate the information into Epics Control System,

 ^{ipmitool} ipmiutil* freeipmi OpenIF FRU Listing Yes Yes Yes Yes Yes
- Several libraries supporting IPMI communication were investigated and final choice was OpenIpmi:
 - it is open-source library with active community
 - during the work it has been integrated into E3
 - communicates with Shelf Manager, but if needed tunneling to CM can be implemented by user

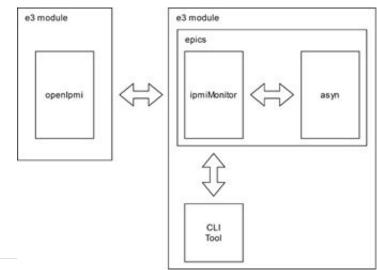
Department of Microelectronics and Computer Science ul. Wólczańska 221/223 90-924 Łódź, tel: 42 631-27-27 fax: 42 636-03-27 mail: <u>secretary@dmcs.p.lodz.pl</u> http://www.dmcs.pl

	ipmitool	ipmiutil*	freeipmi	OpenIPMI*	OpenHPI	
FRU Listing	Yes	Yes	Yes	Yes	Yes	
FRU Info	Yes	Yes	Yes	Yes	Yes	
FRU M-State	Yes**	Yes	Yes	Yes	Yes	
FRU Start/Stop	??	??	??	??	??	
SDR reading	Yes	Yes***	Yes	Yes	Yes	
Sensor reading	Yes	Yes***	Yes	Yes	Yes	
Thr. reading	Yes	Yes***	Yes	Yes	Yes	
Thr. writing	??	??	??	??	??	
E-keying	??	??	??	??	??	
Events	Yes	Yes	??	??	Yes	
HPM.1	Yes****	Yes****	No****	No****	Yes****	

* Bridging of IPMI messages seems to be not supported

** Significant overhead

*** All the information returned by single command - some filtering required **** Information from documentation — not tested yet



source: https://sourceforge.net/projects/openipmi/

Implementation - Overview (2/3)

- openIpmi library is implemented in C and is callback oriented,
- dedicated C++ wrapper has been prepared for easy integration with EPICS or any other higher level software,
- supporting command line tool has been prepared for debugging,
- The EPICS IOC is using asynDriver modules.
- Interfaces of IOC are presented in the Figure

Implementation - Overview (3/3)

- Each FRU in the system is visible as set of PVs corresponding to all fields defined in IPMI specification,
- Each sensor is visible as set of PVs corresponding to fields in SDR and run-time parameters available to sensor in IPMI specification,
- IOC has possibility to adjust polling intervals for sensors and react on SEL events,
- IOC can control hot-swap state of the boards and tune sensor thresholds,
- IOC can report status of backplane links (additional dedicated telnet session this info is not available over IPMI protocol),
- Due to large number of PVs, initial configuration of IOC (DB files) can be complex – for this reason special dynamic mode has been implemented – it generates all needed configuration files based on actual shape of the system.

Tests and verification

- Tested on local MTCA.4 create LLRF reference system "Golden Crate":
 - o all modules have been detected with proper state,
 - possibility of sensors values readouts and threshold modifications,
 - long-term stability confirmed.
- Tests are performed on the ESS side, on four different MTCA crates.
- Long-term stability tests are being planned in near future.

	12-slot MTCA															
			1	2	3	4	5	6	7	8	9	10	11	12		
					Struck-1		Piezo		ΓO							
PSU1	PSU1	MCH	CPU	Timing	Struck-1		RTM carrier		RTM carrier	e.					PSU2	2N2

Golden Crate configuration

Tests and verification

Time for short demo!

Open issues

Features to be implemented:

- Internal archiver recently finished,
- Events management,
- MCH monitoring,
- Handling of module removal (inform user and restart IOC),
- Set-up verification script for automated testing.

Minor issues to be addressed (some incompatibilities detected):

- MCH telnet crash (recently reported to NAT),
- wrong report of some Hot Swap States (for infrastructure modules PM/CU/CLK/PCIe - investigation needed),
- RMCP protocol problem with MCH FW V2.21.5 (openIpmi cannot establish session),
- Occasionally we observe that SDR repos on ShM and CM get out of sync, hard to replicate, but when we have procedure it will be reported to NAT.

P

Summary and conclusions

- The task of IPMI functionality integration with ESS E3 EPICS has been addressed,
- Implementation includes an e3 module form IOC that incorporates ASYN and OpenIPMI library for communication with multiple MCH instances,
- OpenIPMI library (community support) have been used with an ATCA plugin adapted to MTCA specific features,
- Successful implementation of FRU info, hot-swap states and sensors data readout as well as link capabilities and status have been presented,
- Additionally the threshold setting and FRU activation have been integrated too,
- Several open issues have been addressed to vendors in order to improve/fix encountered showstoppers.

Summary and conclusions

Next steps and possible extensions:

- long term testing/evaluation with multiple systems to be started this year,
- work on the deployment scenarios for various ESS systems,
- more reliable access to the link state information will be an asset to this implementation (problems at ESS with PCIe, etc.),
- work on this project can be a part of optimal system life-time management for MTCA.4 based systems @ESS.

Thank You