From truth to reconstruction

Noam Tal Hod

WEIZMANN INST

Illustrating the abstract procedure

* not sure if I'm doing the conversion to TTree properly (in principle it is the same as it used to be with the 2019 setup)

Wing the tracker response as an example

\ll Looking the positrons rate for different ξ and χ

From Tony (true for Sep 22)

Experiment Config	$w_0 = 3\mu m$	$w_0 = 3.5 \mu m$	$w = 0, 4.0 \mu m$	$w_0 = 4.5 \mu m$	$w_0 = 5.0 \mu m$	$w_0 = 8.0 \mu m$	$w_0 = 20.0 \mu m$	$w_0 = 50.0 \mu m$	$w_0 = 10$
peak SQED ξ	5.12	4.44	3.88	3.45	3.1	1.94	0.78	0.31	0.1
peak SQED χ (16.5 GeV)	0.9	0.79	0.69	0.61	0.55	0.34	0.138	0.055	0.0
JETI40 e-laser 16.5 GeV	939	951	946	949	938	1000	193	1232	20
JETI40 e-laser 17.5 GeV	1138	1000	1000	1000	1000	699			
JETI40 g-laser (coarse) 16.5 GeV	1000	1000	999	1000	1000	1000			
JETI40 g-laser 16.5 GeV	785	789	928	844	872	879			
JETI40 g-laser 17.5 GeV									
JETI40 misalignments									
JETI40 mCP production									
	$w_0 = 3.0 \mu m$	$w_0 = 8.0 \mu m$	$w_0 = 9.0 \mu m$	$w_0 = 10.0 \mu m$	$w_0 = 11.0 \mu m$	$w_0 = 12.0 \mu m$			
peak SQED ξ	16.7	6.27	5.57	5.01	4.56	4.18			
peak SQED χ (16.5 GeV)	2.96	1.11	0.99	0.89	0.81	0.74			
phasell e-laser 16.5 GeV		997	1000	993	831	814			
phasell e-laser 17.5 GeV		1011	1119	998	1000	1000			
phasell g-laser 16.5 GeV	progress	408	422	475	373	447			
phasell g-laser 17.5 GeV									
phasell misalignments									
phasell mCP production									

Noam Tal Hod, WIS

)0.0µm				
5				
28				
0				

Vertex and momenta JETI40/e laser/16.5GeV/w0 3000nm

Noam Tal Hod, WIS

Vertex and momenta JETI40/g_laser/16.5GeV/w0_8000nm

Noam Tal Hod, WIS

Emulating reconstruction

* Evaluate the detector response from fast simulation: ResponseFit and AccEffFit (save as TF1 objects) * NOTE: we do this with background overlaid (need to tune to match what we see from Sasha)

* Loop over the signal(s) BXs from Tony and transform the truth information to reco like this:

- * smearing the truth energy is done per particle like: $E_{\rm rec} = E_{\rm tru} \times (1 + {\rm ResponseFit.GetRandom})$ * NOTE: this response in the tracker case is ~flat across all values of E_{tru} -
- * convoluting with the acceptance times efficiency is done like: Weight=AccEffFit.Eval (E_{tru}) -* histograms are filled with this weight per particle! Tracks

* Normalise the distribution to the number of BXs Integrate to get the number of particles/BX/Shot * Compare the emulated reco shapes with the truth ones 0.8

0.6

0.4

0.2

JETI40/(e/γ) laser/16.5GeV/w0 3000nm

JETI40, 3.0 μ m spot $\Rightarrow \xi=5.12, \chi=0.9$

Noam Tal Hod, WIS

JETI40, 3.0 μ m spot $\Rightarrow \xi=5.12, \chi=0.9$

Sep 29 2020

JETI40/(e/γ) laser/16.5GeV/w0 3500nm

JETI40, 3.5 μ m spot $\Rightarrow \xi$ =4.44, χ =0.79

Noam Tal Hod, WIS

JETI40, 3.5 μ m spot $\Rightarrow \xi$ =4.44, χ =0.79

JETI40/(e/y) laser/16.5GeV/w0 4000nm

JETI40, 4.0 μ m spot $\Rightarrow \xi$ =3.88, χ =0.69

Noam Tal Hod, WIS

JETI40, 4.0 μ m spot $\Rightarrow \xi$ =3.88, χ =0.69

Sep 29 2020

JETI40/(e/y) laser/16.5GeV/w0 4500nm

JETI40, 4.5 μ m spot $\Rightarrow \xi=3.45, \chi=0.61$

Noam Tal Hod, WIS

JETI40, 4.5 μ m spot $\Rightarrow \xi$ =3.45, χ =0.61

Sep 29 2020

JETI40/(e/y) laser/16.5GeV/w0 5000nm

JETI40, 5.0 μ m spot $\Rightarrow \xi=3.1, \chi=0.55$

Noam Tal Hod, WIS

JETI40, 5.0 μ m spot $\Rightarrow \xi=3.1, \chi=0.55$

Sep 29 2020

JETI40/(e/y) laser/16.5GeV/w0 8000nm

Noam Tal Hod, WIS

Sep 29 2020

JETI40 <u>e+laser</u> $N_{\rho+}/BX/Shot$ vs the peak ξ and χ

Noam Tal Hod, WIS

Sep 29 2020

JETI40 γ +laser $N_{e^+}/BX/Shot$ vs the peak ξ and χ

Noam Tal Hod, WIS

Sep 29 2020

PhaseII/(e/ γ) laser/16.5GeV/w0 8000nm

JETI40, 8.0 μ m spot $\Rightarrow \xi$ =6.27, χ =1.11

Noam Tal Hod, WIS

JETI40, 8.0 μ m spot $\Rightarrow \xi$ =6.27, χ =1.11

Sep 29 2020

PhaseII/(e/ γ) laser/16.5GeV/w0 9000nm

JETI40, 9.0 μ m spot $\Rightarrow \xi=5.57, \chi=0.99$

Noam Tal Hod, WIS

JETI40, 9.0 μ m spot $\Rightarrow \xi=5.57, \chi=0.99$

Sep 29 2020

PhaseII/(e/ γ)_laser/16.5GeV/w0 10000nm

JETI40, 10.0 μ m spot $\Rightarrow \xi=5.01, \chi=0.89$

Noam Tal Hod, WIS

JETI40, 10.0 μ m spot $\Rightarrow \xi=5.01, \chi=0.89$

Sep 29 2020

PhaseII/(e/ γ)_laser/16.5GeV/w0 11000nm

JETI40, 11.0 μ m spot $\Rightarrow \xi$ =4.56, χ =0.81

Noam Tal Hod, WIS

JETI40, 11.0 μ m spot $\Rightarrow \xi$ =4.56, χ =0.81

Sep 29 2020

PhaseII/(e/ γ)_laser/16.5GeV/w0 12000nm

JETI40, 12.0 μ m spot $\Rightarrow \xi$ =4.18, χ =0.74

Noam Tal Hod, WIS

JETI40, 12.0 μ m spot $\Rightarrow \xi$ =4.18, χ =0.74

Sep 29 2020

PhaseII <u>e+laser</u> $N_{e^+}/BX/Shot$ vs the peak ξ and χ

PhaseII γ +laser $N_{e^+}/BX/Shot$ vs the peak ξ and χ

Noam Tal Hod, WIS

Sep 29 2020

LOI γ +laser $N_{\rho+}/BX/Shot$ vs the peak ξ and χ

	30 TW, 8μm	300 TW, 8μm	300 TW, 3μm
Laser energy after compression (J)	0.9	9	9
Percentage of laser in focus (%)	40	40	40
Laser energy in focus (J)	0.36	3.6	3.6
Laser pulse duration (fs)	30	30	30
Laser focal spot FWHM (µm)	8	8	3
Peak intensity in focus (Wcm ⁻²)	$1.6 imes 10^{19}$	$1.6 imes 10^{20}$	1.1×10^{21}
Dimensionless peak intensity, ξ	2	6.2	16
Laser repetition rate (Hz)	1	1	1
Electron-laser crossing angle (rad))	0.35	0.35	0.35

14 GeV electrons

Electron Lorentz factor	$2.7 imes 10^4$	$2.7 imes 10^4$	2.7×10^{4}
Quantum parameter χ	0.32	1	2.6

17.5 GeV electrons

Electron Lorentz factor	3.4×10^{4}	3.4×10^{4}	3.4×10^{4}
Quantum parameter χ	0.41	1.26	3.26

Table 3. Typical laser and interaction parameters for different initial laser power and focussing geometry, for two different electron energies: 14 GeV and 17.5 GeV.

> **Figure 10.** Number of positrons per laser shot versus the mean value of ξ in the γ_B -laser (for $E_{\text{beam}} = 17.5$ and 14.0 GeV) and the two-step trident process in the *e*-laser setup. No uncertainties are shown. It is expected that the statistical precision achieved will be between about 10% at low ξ and $\ll 1\%$ at high ξ .

Noam Tal Hod, WIS

Not sure why the phaseII numbers are way smaller than in the LOI for the same ξ (with 300 TW at 3 μ m) and almost the same beam energy (1 GeV difference)

Summary

- overall rates
- improvement for the e+laser (e.g. tilting the layers?)
- impact

Some things still to understand regarding the g-laser distributions and

The acc*eff which was optimised for the g+laser setup (incl. toy bkg) works well for the g+laser setup as expected while there's room for

The resolution is already very good and the smearing has negligible

