

Status of charm and beauty cross sections at 5 TeV

Josry Metwally, Achim Geiser, Nur Zulaiha Jomhari - Hamburg, 08.10.2020

My PhD project

• Measure total beauty cross sections at different center of mass energies 0.9,

2.76, 5, 7, 8, and 13 TeV, without theory extrapolation for the first time in \rightarrow

- Measure cross sections in full phase space of D mesons from b hadron decays in small bins in p_{τ} and |Y| and integrate
- Decays:

 $B \to D^* X \to D^0 \pi_s X \to K \pi \pi_s X$ and $B \to D^0 X \to K \pi X$

• Challenge: Separation of D mesons (prompt and from b hadrons decays) near the production threshold

Charm-Beauty Separation

- Trained with MC (prompt and non-prompt D⁰) how to distinguish statistical between charm and beauty (talk can be found <u>here</u>)
- Distance of Closest Approach (DCA) distribution

 $D^0 DCA = D^0 flight distance * sin(\phi)^2$

 D^0 flight distance

 $D^0 D$

Information about used data and MC for 2015 5 TeV

Sample	#Events	w. JSONv2	w. JSON	(N)MB
/MinimumBias1/Run2015E-PromptReco-v1/AC	DD 126,809,757	73,368,897	111,413,194	
/MinimumBias2/Run2015E-PromptReco-v1/AG	DD 126,998,875	73,494,008	111,600,855	
/MinimumBias3/Run2015E-PromptReco-v1/AG	DD 126,853,017	73,379,825	111,502,472	
/MinimumBias4/Run2015E-PromptReco-v1/AC	DD 127,250,025	73,729,327	111,851,720	
/MinimumBias5/Run2015E-PromptReco-v1/AG	DD 127,169,537	73,649,847	111,772,459	
/MinimumBias6/Run2015E-PromptReco-v1/AC	DD 127,256,729	73,737,123	111,859,378	
/MinimumBias7/Run2015E-PromptReco-v1/AC	DD 127,256,692	73,736,801	111,858,963	
/MinimumBias8/Run2015E-PromptReco-v1/AG	DD 127,239,988	73,736,118	111,841,797	
/MinimumBias9/Run2015E-PromptReco-v1/AC	DD 127,222,974	73,736,847	111,826,347	
/MinimumBias10/Run2015E-PromptReco-v1/A	AOD 127,220,628	73,699,535	111,822,249	
/MinimumBias11/Run2015E-PromptReco-v1/A	AOD 126,325,160	73,749,761	111,857,169	
/MinimumBias12/Run2015E-PromptReco-v1/A	AOD 127,207,059	73,701,871	111,808,958	
/MinimumBias13/Run2015E-PromptReco-v1/A	AOD 125,206,184	71,915,856	109,958,587	
/MinimumBias14/Run2015E-PromptReco-v1/A	AOD 126,522,737	73,495,492	111,602,374	
/MinimumBias15/Run2015E-PromptReco-v1/A	AOD 126,753,153	73,494,707	111,602,223	
/MinimumBias16/Run2015E-PromptReco-v1/A	AOD 127,128,323	73,750,208	111,872,629	
/MinimumBias17/Run2015E-PromptReco-v1/A	AOD 126,280,043	72,982,926	111,105,435	
/MinimumBias18/Run2015E-PromptReco-v1/A	AOD 126,542,929	73,253,032	111,311,694	
/MinimumBias19/Run2015E-PromptReco-v1/A	AOD 126,373,548	73,123,502	111,214,484	
/MinimumBias20/Run2015E-PromptReco-v1/A	AOD 127,031,373	73,527,679	111,633,897	
Total	2,536,648,731	1,469,263,362	2,231,316,884	1,853,304,000
effective luminosity (see section 5.2)	VII	27.95 nb ⁻¹	40.17 nb−1	40.17 nb^{-1}

data

MC

/D0Kpi_pT0toInf_TuneCUEP8M1_5TeV_pythia8-evtgen/

HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_v3-v3/AODSIM

12,077,624

 40.4 nb^{-1}

Used cuts for selection of $D^{*\pm} \to D^0 \pi_s^{\pm} \to K^{\mp} \pi^{\pm} \pi_s^{\pm}$

- Track p_T cut: $p_T^{K,\pi} > 0.5~GeV$ none for slow pion $\mathcal{\pi}_{s}$
- D^o mass cut: $1.836 < m_{D^0} <$
- We define our cuts in two p_T re

• in the **higher** \mathbf{p}_{τ} region p

$$\begin{array}{l} \text{right charge} \\ \text{wrong charge} \\ \text{K}^{\mp}\pi^{\pm}\pi_{s}^{\pm} \\ \text{with a real D}^{0} \\ \text{comb bg} \\ \text{use both to extract a very} \\ \text{clear signal} \\ \end{array}$$

the D^* system

clear signal

(cos $\phi ~ 1$)

(constraint on PV

Vertex

$$\left(dl_{sig}^{D^{0}} > 0 \& pt_{Tfrac}^{D^{*}} > 0.15 \& \cos(\phi) > 0.8\right) or dl_{sig}^{D^{0}} > 2$$

KalmanVertexFitter + momentum refit) - in the lower p_ region $~~p_T^{D^*} < 3.5~GeV$

$$pt_{Tfrac}^{D^{0}} > 0.1 \& \cos(\phi) > 0.8 \&$$

$$\left(dl_{sig}^{D^{0}} > 1.5 \& pt_{Tfrac}^{D^{*}} > 0.15\right) or \left(dl_{sig}^{D^{0}} > 2 \& \cos(\phi_{D^{0}}) > 0.995\right) or dl_{sig}^{D^{0}} > 3\right)$$

$$Other hadrons (D^{*} p_{T} fraction) Other hadrons (D^{$$

Signal extraction on 5 TeV 2015 data

Fitting to data

- Used the Higgs combine tool for fitting the MC templates to the data
 - $N_c^{signal} = 38346.7^{+377.8}_{-377.7}$ $N_b^{signal} = 2665.7^{+280.8}_{-271.6}$
- Partial total cross section in phase space: $p_T > 3.5 \, GeV |Y| < 2.5$ $\sigma_{pp \rightarrow D^*_{prompt}} = 246.06^{+2.42}_{-2.42} \mu b$

$$\sigma_{pp \to D^*_{nonprompt} = 17.94^{+1.89}_{-1.83} \mu b}$$

PYTHIA: 30.77 μb

only statistical uncertainties

Double differential efficiency table for (non)prompt D*

Charm-Beauty Separation example p_T:2-3 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:5-6 GeV, |y|:0.0-0.5

Differential cross section for (non) prompt D*

- Measured D mesons $D^{*\pm} \to D^0 \pi_s^{\pm} \to K^{\mp} \pi^{\pm} \pi_s^{\pm}$
- Separation of D mesons (prompt and from b hadrons decays) near the production threshold
- First measurement of D* cross sections from charm and beauty at 5TeV in CMS

• More detailed information in other presentations

Backup

Backup

- Trained with a MC (prompt and non-prompt D⁰) how to distinguish statistical between charm and beauty and created Distance of Closest Approach (DCA) distribution (HIN16-016), Used:
 - MC15_PrmtD0pT0: /PrmtD0_pThat-0_pT-0_pp_5p02-Pythia8/HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_v3-v1/AODSIM, 1347186 events
 - MC15_NonPrD0pT0: /NonPrD0_pThat-0_pT-0_pp_5p02-Pythia8/HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_v3-v1/AODSIM, 1942712 events
 - MC15_D0Kpi: /D0Kpi_pT0toInf_TuneCUEP8M1_5TeV_pythia8-evtgen/HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_v3-v3/AODSIM, "pdmv_evts_in_DAS": 12077624

Fixed Order Next to Leading Log

- We used FONLL for the prediction of heavy quark production and chose D* as hadronic final state
- We used the following set of parameters for charm production
 - the fragmentation factor for charm $f_c = 0.236$
 - the PDF set CTEQ6.6 (PDF uncertainty summed in quadrature to mass und scale uncertainty)
 - central value for mass m_c = 1.5 GeV (mass uncertainty m_c = 1.3, 1.7 GeV summed in quadrature to scales uncertainties)

- central value
$$\mu_R = \mu_F = \mu_0 = \text{sqrt}(\text{m}^2 + \text{p}_T^2)$$

- scale uncertainties: $\mu_0/2 < \mu_R$ and $\mu_F < 2\mu_0$ with $1/2 < \mu_R/\mu_F < 2$
- We variate the mass, PDF, renormalisation and factorization scale and got and uncertainty band by the lower and upper values of this variation

Cross section calculation in higher pt bin

$$N_{c+b} = (c \pm \delta_c) \bullet N_c + (b \pm \delta_b) \bullet N_b = (0.812_{-0.008}^{0.008} \pm 0.008) \bullet 47225 + (0.579_{-0.059}^{0.061} \pm 0.06) \bullet 4604$$
$$= (38346.7_{-377.8}^{377.8} \pm 377.8) + (2665.72_{-271.636}^{280.844} \pm 276.24) = 41012.4 \pm 468.019$$

Branching ratios:

$$D^{*} \rightarrow D^{0} \pi = 0.667 \pm 0.005$$

 $D^{0} \rightarrow K \pi = 0.0395 \pm 0.0003$

for 2015 Data 5TeV
$$L_{int} = 40.17$$
:
 $\sigma_{pp \rightarrow D_{nonprompt}} \rightarrow D^{0} \pi \rightarrow K \pi \pi = \frac{N_{signal}}{L_{int} \bullet \epsilon_{b}} = \frac{2665.72}{40.17 \bullet 0.140439} = 472.526 \text{ nb}$, $\sigma_{pp \rightarrow D_{nonprompt}} = 17935_{-1827.58}^{1889.53} \text{ nb}$
 $\sigma_{pp \rightarrow D_{prompt}} \rightarrow D^{0} \pi \rightarrow K \pi \pi = \frac{N_{signal}}{L_{int} \bullet \epsilon_{c}} = \frac{38346.7}{40.17 \bullet 0.147249} = 6482.96 \text{ nb}$, $\sigma_{pp \rightarrow D_{prompt}} = 246065_{-2424.29}^{2424.29} \text{ nb}$

Charm-Beauty Separation example p_T:1-2 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:2-3 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:3-4 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:4-5 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:5-6 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:6-7 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:7-8 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:8-9 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:9-10 GeV, |y|:0.0-0.5

Charm-Beauty Separation example p_T:10-11 GeV, |y|:0.0-0.5

Migration plot

Migration plot

